EAGER: Collaborative Research: Graphene Nanoelectromechanical Oscillators for Extreme Temperature and Harsh Environment Sensing

EAGER:合作研究:用于极端温度和恶劣环境传感的石墨烯纳米机电振荡器

基本信息

  • 批准号:
    2221925
  • 负责人:
  • 金额:
    $ 14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Sensors capable of operating at high temperatures with high precision and stability are of great interest and importance for emerging harsh and extreme environments, including but not limited to wildfire, aerospace, engine, nuclear plant, and other critical applications. Today’s mainstream state-of-the-art high-temperature sensing solutions involve multiple components distributed in distant zones at various temperatures and connected via high-temperature cables or fibers, resulting in bulky and ineffective sensing systems. Miniature high-temperature sensors are thus highly desirable, to provide real-time sensing and monitoring capabilities in small form factor, particularly toward future internet of things (IoT) adaptable to harsh environments. To date, integrated high-temperature (up to 1000C) sensors remain challenging due to the lack of device technologies in both sensing elements and interfacing circuits. In addition to developing a suitable platform, fundamental studies of the effects of ~1000C high temperature upon devices are greatly needed. This project is focused on innovating 1000C-capable sensors based on integrating graphene nanoelectromechanical resonators and graphene electronics, by exploiting the inherent high-temperature durability and unique combination of the electrical, thermal, and mechanical properties of graphene. This research will lay the foundation for developing ultracompact, ultralow-weight sensors that can operate at very high temperatures and in harsh environments, especially in energy and aerospace industry, and for environment and disaster monitoring (e.g., to assist drones for fighting wildfires). Findings in this research of atomically thin crystals and their devices will generate fascinating experiential learning materials and inspirations for students from K-12 through graduate school. The project also creates opportunities for broadening the participation of underrepresented and economically disadvantageous groups, and for partnership to bridge the gap between academia and industry in scaled manufacturing. This project aims to design, model, fabricate, and experimentally demonstrate a new class of low-power resonant nanoelectromechanical sensors for very high or extreme temperature, and harsh-environment applications where temperature of interest can exceed 1000C. The proposed research will achieve these goals by systematically investigating atomically thin graphene two-dimensional (2D) resonant nanoelectromechanical transducers, 2D nanoelectronic circuits, and their integrated systems. Built on understanding fundamental principles and limitations in state-of-the-art devices and systems, this project exploits multiphysics coupling among mechanical, electrical, and thermal domains at high temperature in graphene resonant nanoelectromechanical systems (NEMS) platform, to carry out efficient and judicious use of the internal transduction effects that uniquely exist in high-temperature environment, thanks to the inherent high-temperature endurance of graphene. Specifically, this EAGER project will demonstrate graphene NEMS oscillators with real-time sensing capabilities, by co-designing and fabricating graphene NEMS and graphene electronics that are chip-to-chip integrated using high-temperature interconnects. After successful construction of graphene oscillators, temperature sensing up to 1000C or even higher will be demonstrated, to validate sensing function of the graphene NEMS oscillators. This research will attain new innovations and insights in device-circuit co-design and nanosystems integration, since otherwise high-temperature environments deteriorate sensor performance for nearly all conventional materials and devices. The heterogeneous integration of the graphene NEMS and graphene electronics will enable next-generation highly durable miniaturized low-power sensors for high-temperature and extreme environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能够在高温下以高精度和稳定性操作的传感器对于新兴的恶劣和极端环境(包括但不限于野火、航空航天、发动机、核电站和其他关键应用)具有极大的兴趣和重要性。 当今主流的最先进的高温传感解决方案涉及分布在不同温度下的远距离区域的多个组件,并通过高温电缆或光纤连接,导致传感系统体积庞大且效率低下。 因此,非常需要微型高温传感器,以提供小尺寸的实时感测和监测能力,特别是面向未来适应恶劣环境的物联网(IoT)。 到目前为止,由于传感元件和接口电路缺乏器件技术,集成高温(高达1000 ℃)传感器仍然具有挑战性。 除了开发合适的平台外,还非常需要对~1000 ℃高温对器件的影响进行基础研究。 该项目的重点是通过利用石墨烯固有的高温耐久性和独特的电,热和机械特性的组合,基于集成石墨烯纳米机电谐振器和石墨烯电子器件创新1000个可用于MEMS的传感器。 这项研究将为开发超紧凑,超轻的传感器奠定基础,这些传感器可以在非常高的温度和恶劣的环境中工作,特别是在能源和航空航天工业中,以及环境和灾害监测(例如,协助无人机扑灭野火)。 这项关于原子级薄晶体及其器件的研究结果将为从K-12到研究生院的学生提供引人入胜的体验式学习材料和灵感。 该项目还为扩大代表性不足和经济弱势群体的参与创造了机会,并为缩小学术界和工业界在规模化制造方面的差距建立了伙伴关系。该项目旨在设计,建模,制造和实验演示一种新型的低功耗谐振纳米机电传感器,用于非常高或极端温度,以及温度超过1000摄氏度的恶劣环境应用。 拟议的研究将通过系统地研究原子薄石墨烯二维(2D)谐振纳米机电换能器,2D纳米电子电路及其集成系统来实现这些目标。 该项目建立在对最先进设备和系统的基本原理和局限性的理解基础上,利用石墨烯谐振纳机电系统(NEMS)平台中高温下机械,电气和热学领域之间的多物理耦合,以有效和明智地利用高温环境中独特存在的内部转导效应,这要归功于石墨烯固有的耐高温性。 具体而言,EAGER项目将通过共同设计和制造石墨烯NEMS和石墨烯电子器件来展示具有实时传感能力的石墨烯NEMS振荡器,这些石墨烯NEMS和石墨烯电子器件使用高温互连进行芯片到芯片集成。 在成功构建石墨烯振荡器之后,将展示高达1000摄氏度甚至更高的温度传感,以验证石墨烯NEMS振荡器的传感功能。 这项研究将在器件-电路协同设计和纳米系统集成方面取得新的创新和见解,因为否则高温环境会使几乎所有传统材料和器件的传感器性能恶化。 石墨烯NEMS和石墨烯电子器件的异质集成将使下一代高度耐用的小型化低功耗传感器能够用于高温和极端环境。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hossein Lavasani其他文献

Hossein Lavasani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hossein Lavasani', 18)}}的其他基金

CAREER: AI-Enabled Self-Healing and Trusted Wireless Transceivers for Biomedical Applications
职业:用于生物医学应用的人工智能自我修复和可信无线收发器
  • 批准号:
    2339162
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Continuing Grant
EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceiversfor IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
  • 批准号:
    2029407
  • 财政年份:
    2020
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了