Collaborative Research: FW-HTF-P: Efficient Inspection of Unpiggable Pipelines through Human-Robot Integration
合作研究:FW-HTF-P:通过人机集成有效检查不可清管的管道
基本信息
- 批准号:2222816
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent trends in emerging fuels, such as renewable natural gas and hydrogen, provide the United States a golden opportunity to become a powerhouse in global energy markets and truly achieve full energy independence. However, recent economic and business analytics has indicated that the US conventional oil and gas revolution is being held back by its aging pipeline infrastructure, more than half of which is over 60 years old. Therefore, within the gas pipeline industry, an urgent need is to inspect and certify existing infrastructure for emerging fuel transport. A grand challenge in gas pipeline infrastructure is aging-related deterioration that often leads to catastrophic consequences. Ensuring the integrity of pipelines requires advanced inspection and diagnostic tools in the next few decades. Due to the complex geometries of pipelines, over or under-sized valves, short-radius bends, and other conditions, a significant portion of pipeline infrastructure in the US remains “unpiggable” – unable to be inspected by the conventional inline inspection robots. Allowing pipeline operators to inspect unpiggable gas pipelines with newly developed robots, analytics, and human integration will significantly help the gas industry to manage critical infrastructure. The proposed study aims to tackle this challenging problem to reduce risk and improve efficiency for an industry with inherent dangers related to transporting, storing, and accessing combustible and corrosive materials. The robotic, decision-support, and training tools created in this project will provide a conduit to recruiting and retaining individuals who have not traditionally been considered for pipeline inspection positions, such as persons with disabilities and operators with insufficient field experience and education.This project explores how a cyber-physical-human interplay enables a more responsive and effective translation of new technology advancements for oil and gas pipeline workers. The overall goal of this project is to understand the work context of pipeline inspection, examine the feasibility of a novel robotic inspection system, and generate the empirical groundwork for a larger project proposal to the NSF’s Future of Work at the Human-Technology Frontier (FW-HTF) Initiative. The future FW-HTF proposal aims to create a novel human-robot-AI framework to enable automated inspection, safety assessment, and worker training. Specific plans for this development grant involve (a) interviewing stakeholders to understand the current work practices of pipeline inspection and assess their needs and perceptions of robotics and automation technologies; (b) gaining an understanding of human factors (such as trust) that strengthen the partnership between humans and robots by conducting artifact analysis of robot prototypes with stakeholders; (c) understanding potential safety hazards of robotic pipeline inspection tools and developing guidelines on robot design for mitigating such risks; and (d) understanding the human knowledge and inspection data fusion and their impact on the risk assessment for the pipeline with the preliminary results from the above tasks. The proposed study will significantly advance the understanding of the future of work, workers, and technology for efficient inspection of critical pipeline infrastructure. If successful, this development grant will lead to a comprehensive FW-HTF research proposal for designing and implementing cyber-physical-human systems that best utilize the capacities of human workers and new technologies to achieve high productivity and safe work conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可再生天然气和氢气等新兴燃料的最新趋势为美国提供了成为全球能源市场强国并真正实现完全能源独立的黄金机会。然而,最近的经济和商业分析表明,美国传统的石油和天然气革命正受到其老化的管道基础设施的阻碍,其中一半以上的管道基础设施已经超过60年。因此,在天然气管道行业,迫切需要检查和认证现有的基础设施,以适应新兴的燃料运输。天然气管道基础设施面临的一个重大挑战是与老化有关的恶化,这往往会导致灾难性的后果。确保管道的完整性需要在未来几十年内使用先进的检测和诊断工具。由于管道的复杂几何形状、阀门尺寸过大或过小、短半径弯曲和其他条件,美国的大部分管道基础设施仍然“无法清管”-无法通过传统的在线检测机器人进行检测。允许管道运营商使用新开发的机器人、分析和人工集成来检查不可清管的天然气管道,将大大有助于天然气行业管理关键基础设施。该研究旨在解决这一具有挑战性的问题,以降低风险并提高与运输,储存和获取易燃和腐蚀性材料相关的固有危险行业的效率。该项目中创建的机器人、决策支持和培训工具将为招聘和留住传统上不被考虑担任管道检测职位的人员提供渠道,例如残疾人和现场经验和教育不足的操作员。该项目探讨网络物理如何人与人之间的相互作用使石油和天然气管道工人能够更快、更有效地了解新技术的进步。该项目的总体目标是了解管道检测的工作背景,研究新型机器人检测系统的可行性,并为NSF的未来人类技术前沿(FW-HTF)计划的更大项目提案奠定经验基础。未来的FW-HTF提案旨在创建一个新的人-机器人-AI框架,以实现自动化检查,安全评估和工人培训。这项发展赠款的具体计划包括:(a)与利益相关者面谈,了解管道检测的当前工作实践,评估他们对机器人和自动化技术的需求和看法;(B)了解人为因素(如信任),通过与利益相关者一起对机器人原型进行人工制品分析,加强人类与机器人之间的伙伴关系;(c)了解机器人管道检查工具的潜在安全危险,并制定机器人设计指南,以减轻此类风险;以及(d)了解人类知识和检查数据的融合及其对管道风险评估的影响,以及上述任务的初步结果。拟议的研究将大大促进对未来工作,工人和技术的理解,以有效地检查关键管道基础设施。如果成功的话,这笔发展赠款将导致一个全面的FW-HTF研究提案,用于设计和实施网络物理人类系统,最好地利用人类工人的能力和新技术,以实现高生产力和安全的工作条件。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Situating Robots in the Organizational Dynamics of the Gas Energy Industry: A Collaborative Design Study
将机器人置于天然气能源行业的组织动态中:协作设计研究
- DOI:10.1109/ro-man57019.2023.10309385
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lee, Hee Rin;Tan, Xiaobo;Zhang, Wenlong;Deng, Yiming;Liu, Yongming
- 通讯作者:Liu, Yongming
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongming Liu其他文献
Failure mechanism investigation of bottom plate in concrete box girder bridges
混凝土箱梁桥底板破坏机理研究
- DOI:
10.1016/j.engfailanal.2020.104711 - 发表时间:
2020-10 - 期刊:
- 影响因子:4
- 作者:
Da Wang;Lei Wang;Yongming Liu;Benkun Tan;Yang Liu - 通讯作者:
Yang Liu
A nanoFlare-based strategy for in situ tumor margin demarcation and neoadjuvant gene/photothermal therapy
基于 nanoFlare 的原位肿瘤边缘划分和新辅助基因/光热治疗策略
- DOI:
10.1002/smll.201802745 - 发表时间:
2018 - 期刊:
- 影响因子:13.3
- 作者:
Rong Yan;Jie Chen;Jianhao Wang;Jiaming Rao;Xuancheng Du;Yongming Liu;Leshuai Zhang;Lin Qiu;Bo Liu;Yuan-Di Zhao;Pengju Jiang;Chunying Chen;Yong-Qiang Li - 通讯作者:
Yong-Qiang Li
Neural optimization machine: a neural network approach for optimization and its application in additive manufacturing with physics-guided learning
神经优化机:用于优化的神经网络方法及其在物理引导学习的增材制造中的应用
- DOI:
10.1098/rsta.2022.0405 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jie Chen;Yongming Liu - 通讯作者:
Yongming Liu
Simultaneous determination of 346 multiresidue pesticides in grapes by PSA-MSPD and GC-MS-SIM.
PSA-MSPD 和 GC-MS-SIM 法同时测定葡萄中 346 种多残留农药
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:6.1
- 作者:
Yu;G. Pang;Hua Shu;C. Fan;Yongming Liu;Jie Feng;Yanping Wu;Qiaoying Chang - 通讯作者:
Qiaoying Chang
Dosimetric and biological comparison of treatment plans between EDGE and CyberKnife systems in stereotactic body radiation therapy for localized prostate cancer
EDGE 和射波刀系统在局部前列腺癌立体定向放射治疗中治疗计划的剂量学和生物学比较
- DOI:
10.21203/rs.3.rs-42811/v1 - 发表时间:
2020 - 期刊:
- 影响因子:3.3
- 作者:
Z. Dai;Lian Zhu;Ting;Aihua Wang;Xueling Guo;Zhenguo Wang;Yongming Liu;Ya;Pei;Ning Li;Huojun Zhang;Z. Xiang - 通讯作者:
Z. Xiang
Yongming Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongming Liu', 18)}}的其他基金
Collaborative Research: Fatigue Damage Prognosis for Slender Coastal Bridges
合作研究:沿海细长桥梁的疲劳损伤预测
- 批准号:
1536994 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Probabilistic Fatigue Life Prediction and Risk Assessment of Aging Bridges in Cold Regions
寒地桥梁老化概率疲劳寿命预测及风险评估
- 批准号:
1263412 - 财政年份:2012
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Probabilistic Fatigue Life Prediction and Risk Assessment of Aging Bridges in Cold Regions
寒地桥梁老化概率疲劳寿命预测及风险评估
- 批准号:
0900111 - 财政年份:2009
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326170 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326160 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
- 批准号:
2326198 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326407 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326408 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
- 批准号:
2326146 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326169 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
- 批准号:
2326186 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326159 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant