Collaborative Research: FW-HTF-R: Wearable Safety Sensing and Assistive Robot-Worker Collaboration for an Augmented Workforce in Construction
合作研究:FW-HTF-R:可穿戴安全传感和辅助机器人工人协作,增强建筑劳动力
基本信息
- 批准号:2222881
- 负责人:
- 金额:$ 72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Construction workers exert intense physical effort and experience serious safety and health risks in hazardous working environments. Thus, the construction industry is one of the highest-risk sectors in the US. A significant shortage of skilled workers in the construction industry amplifies the need to improve workers’ safety and health. Furthermore, the current workforce is aging and retiring; approximately 39% of construction workers were between 45-64 years old in 2020. Low interest among young adults and very low representation of women workers (only 4% in 2020) is exacerbating the existing labor shortage. As a result, there is an urgent need to develop new technology that keeps workers safe and injury-free, makes the industry more inclusive and economically sustainable, and eventually changes negative images that construction jobs are unsafe, low tech, and too male-dominated. The objective of this FW-HTF research project is to develop wearable safety sensing and assistive robot-worker collaboration for an augmented workforce, thereby improving worker retention and attracting women and young workers to construction careers. The researchers will also develop a number of integrated research and education programs to attract students from underrepresented groups into engineering and involve undergraduate students in research.Although robotics technologies are increasingly used, most research focuses on how they support construction tasks and yield economic benefits. Few studies discuss how to deploy wearable exoskeletons to prevent work-related musculoskeletal disorders and improve workers’ safety and health. New interventions are needed to address current safety and health knowledge gaps, identify social and economic benefits, risks, and barriers to the adoption of emerging technologies, and contribute to the development of an inclusive, diverse, and sustainable workforce in construction. Wearable devices, machine learning, and virtual-, augmented- and mixed-reality technologies offer great promise for revolutionizing existing practices in construction. This potential motivates the PIs to develop an integrated, multidisciplinary approach to bring these emerging technologies to individual workers, organizations, and the construction industry to enhance worker safety and health, improve productivity, address gender- and age-related labor shortages and expand employment opportunities. In this research project, the team of researchers plans to develop wearable occupational safety sensing and assistive robotic collaboration technology for skilled construction workers. Specifically, this project will emphasize: (1) machine learning-enabled, real-time worker activity recognition and pose estimation; (2) user-centered design of soft exoskeletons; (3) mixed reality-enhanced work skill transferring and workplace-based learning; (3) wearable safety sensing and assistive robotic collaboration for an augmented workforce; (4) analyses of social-economic impacts of the proposed technology; and (5) pilot studies, industrial deployment and workforce training. Academic collaborations and multi-stakeholder partnerships will provide the intellectual and personnel infrastructure necessary to address the multi-disciplinary, multi-faceted challenges by integrating best practices in construction with emerging technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建筑工人在危险的工作环境中付出巨大的体力,并面临严重的安全和健康风险。因此,建筑业是美国风险最高的行业之一。建筑业技术工人严重短缺,加大了改善工人安全和健康的必要性。此外,目前的劳动力正在老龄化和退休;2020年,大约39%的建筑工人年龄在45岁至之间。年轻人的兴趣不大,女工的比例很低(2020年只有4%),这加剧了现有的劳动力短缺。因此,迫切需要开发新的技术,使工人安全和不受伤害,使该行业更具包容性和经济可持续发展,并最终改变建筑工作不安全、低技术和过于男性主导的负面形象。FW-HTF研究项目的目标是为更多的劳动力开发可穿戴式安全传感和辅助机器人-工人协作,从而提高工人保留率,并吸引女性和年轻工人投身建筑行业。研究人员还将开发一系列综合研究和教育项目,以吸引来自代表性不足群体的学生进入工程学,并让本科生参与研究。尽管机器人技术越来越多地被使用,但大多数研究都集中在它们如何支持建筑任务和产生经济效益。很少有研究讨论如何部署可穿戴外骨骼,以预防与工作相关的肌肉骨骼疾病,并提高工人的安全和健康。需要采取新的干预措施,以填补当前安全和健康知识的差距,确定采用新兴技术的社会和经济效益、风险和障碍,并促进建设一支包容、多样化和可持续的劳动力队伍。可穿戴设备、机器学习以及虚拟、增强和混合现实技术为变革现有的建筑实践提供了巨大的希望。这一潜力促使私人投资机构开发一种综合的、多学科的方法,将这些新兴技术带给个人工人、组织和建筑行业,以增强工人的安全和健康,提高生产率,解决与性别和年龄相关的劳动力短缺问题,并扩大就业机会。在这个研究项目中,研究团队计划为熟练的建筑工人开发可穿戴的职业安全传感和辅助机器人协作技术。具体地说,该项目将强调:(1)支持机器学习的实时工人活动识别和姿势估计;(2)以用户为中心的软外骨骼设计;(3)混合现实增强的工作技能转移和基于工作场所的学习;(3)用于增加劳动力的可穿戴安全传感和辅助机器人协作;(4)拟议技术的社会经济影响分析;以及(5)试点研究、工业部署和劳动力培训。学术合作和多方利益相关者伙伴关系将提供必要的智力和人员基础设施,通过将建筑方面的最佳实践与新兴技术相结合来应对多学科、多方面的挑战。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chao Wang其他文献
Ground Behaviors Analysis of a Stope Covered by the Thin Bedrock and Large-Thick Alluvium: A Case Study
薄基岩和大厚冲积层覆盖采场的地层行为分析:案例研究
- DOI:
10.1155/2022/4759416 - 发表时间:
2022-02 - 期刊:
- 影响因子:1.6
- 作者:
Xiaoping Li;Guangchao Zhang;Guangzhe Tao;Chao Wang;Huaixuan Cao;Xipo Zhao;Xianyang Yan;Shibao Shen;Guanglei Zhou - 通讯作者:
Guanglei Zhou
QCD calculations of radiative heavy meson decays with subleading power corrections
辐射重介子衰变的 QCD 计算与次超导功率修正
- DOI:
10.1007/jhep04(2020)023 - 发表时间:
2020-02 - 期刊:
- 影响因子:0
- 作者:
Hua-Dong Li;Cai-Dian Lu ̈;Chao Wang;Yu-Ming Wang;Yan-Bing Wei - 通讯作者:
Yan-Bing Wei
Hardware Accelerator Design of Non-linear Optimization Correlative Scan Matching Algorithm in 2D LiDAR SLAM for Mobile Robots
移动机器人2D LiDAR SLAM中非线性优化相关扫描匹配算法的硬件加速器设计
- DOI:
10.1109/primeasia56064.2022.10103802 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Qianjin Wang;Ao Hu;Dongxiao Han;Yu Yu;Guoyi Yu;Yuwen Li;Chao Wang - 通讯作者:
Chao Wang
Out-of-plane dimeric MnIII quadridentate Schiff-base complexes: Synthesis, structure and magnetic properties
面外二聚 MnIII 四齿席夫碱配合物:合成、结构和磁性
- DOI:
10.1016/j.ica.2009.03.048 - 发表时间:
2009-08 - 期刊:
- 影响因子:0
- 作者:
Ya-Fan Zhao;Chao Wang;Qing-Lun Wang;Yu-Hua Feng;Daizheng Liao;Jun Li;Shi-Ping Yan - 通讯作者:
Shi-Ping Yan
A novel earthworm-inspired smart lubrication material with self-healing function
具有自愈功能的新型蚯蚓智能润滑材料
- DOI:
10.1016/j.triboint.2021.107303 - 发表时间:
2021-10 - 期刊:
- 影响因子:6.2
- 作者:
Hongwei Ruan;Yaoming Zhang;Qihua Wang;Chao Wang;Tingmei Wang - 通讯作者:
Tingmei Wang
Chao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chao Wang', 18)}}的其他基金
Collaborative Research: FMitF: Track I: A Principled Approach to Modeling and Analysis of Hardware Fault Attacks on Embedded Software
合作研究:FMitF:第一轨:嵌入式软件硬件故障攻击建模和分析的原则方法
- 批准号:
2220345 - 财政年份:2022
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
NSF-BSF: Synchronous electro-optical DNA detection using low-noise dielectric nanopores on sapphire
NSF-BSF:使用蓝宝石上的低噪声介电纳米孔进行同步电光 DNA 检测
- 批准号:
2020464 - 财政年份:2020
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
FW-HTF-P: Collaborative Research: Wearable Safety and Health Assistive Robot Collaboration for Skilled Construction Workers
FW-HTF-P:合作研究:为熟练建筑工人提供可穿戴安全与健康辅助机器人协作
- 批准号:
2026575 - 财政年份:2020
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Photochemically Induced, Polymer-Assisted Deposition for 3D Printing of Micrometer-Wide and Nanometer-Thin Silver Structures
用于微米宽和纳米薄银结构 3D 打印的光化学诱导聚合物辅助沉积
- 批准号:
1947753 - 财政年份:2020
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
CAREER: Integrated Optofluidic Chips towards Label-Free Detection of Exosomal MicroRNA Biomarkers
职业:集成光流控芯片实现外泌体 MicroRNA 生物标志物的无标记检测
- 批准号:
1847324 - 财政年份:2019
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Low-Profile Ultra-Wideband Wide-Scanning Multi-Function Beam-Steerable Array Antennas
薄型超宽带宽扫描多功能波束可控阵列天线
- 批准号:
EP/S005625/1 - 财政年份:2019
- 资助金额:
$ 72万 - 项目类别:
Research Grant
Enhancing CO2 Reduction by Controlling the Ensemble of Active Sites
通过控制活动站点的整体来加强二氧化碳减排
- 批准号:
1930013 - 财政年份:2019
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Interplay of Mass Transport and Chemical Kinetics in the Electroreduction CO2
电还原 CO2 中传质与化学动力学的相互作用
- 批准号:
1803482 - 财政年份:2018
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Safety Guard: A Formal Approach to Safety Enforcement in Embedded Control Systems
CSR:小型:协作研究:安全卫士:嵌入式控制系统中安全执行的正式方法
- 批准号:
1813117 - 财政年份:2018
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
INFEWS N/P/H2O: Collaborative Research: Catalytic Dephosphorylation Using Ceria Nanocrystals
INFEWS N/P/H2O:合作研究:使用二氧化铈纳米晶体催化脱磷酸
- 批准号:
1664967 - 财政年份:2017
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
相似国自然基金
复杂电子产品超精密加工及检测关键技术研究与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326170 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326160 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
- 批准号:
2326198 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326407 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326408 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
- 批准号:
2326146 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326169 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
- 批准号:
2326186 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326159 - 财政年份:2023
- 资助金额:
$ 72万 - 项目类别:
Standard Grant