The Roles of Mitochondrial Behavior and Morphology in Animal Performance

线粒体行为和形态学在动物性能中的作用

基本信息

  • 批准号:
    2223528
  • 负责人:
  • 金额:
    $ 95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Mitochondria are components of cells that produce energy in the form of the chemical ATP and perform numerous other core cellular processes. This project investigates how the shape and connectedness of mitochondria affect energy production at the cellular and whole-organism levels. ATP fuels nearly all physiological processes that occur in the body, shaping the energy utilization strategy and pace of life for each species. Mitochondria alter their shape (morphology) and move within the cell to interact with one another, a process referred to as mitochondrial behavior which appears to affect ATP production. The following hypotheses are being tested: 1) Changes in mitochondrial morphology and behavior increase ATP production, and 2) Mitochondrial behavior and morphology play key roles in the performance of animals, as indicated by how they respond to low food availability, reproduction, and aging. These ideas will be tested in two distantly related species, a copepod (a species of zooplankton found in tide pools) and the house mouse. In addition, research on mitochondria will be used as a platform for science education and the improvement of science literacy in Alabama. In collaboration with local biology teachers, an integrative and inspiring laboratory for high school students will be created. Teachers in East Alabama will be trained in the application of this laboratory. Once completed, the laboratory will be submitted to the Alabama State Board of Education for review. If approved, it will be available for use in every high school biology classroom in Alabama. The project also involves training and mentoring of graduate students, and a collaboration with a rural nature center to provide outdoors, hands-on experience with invertebrate biodiversity to more than 600 local participants.Organisms convert chemical energy into ATP to support essential processes including growth, self-maintenance, and reproduction. Mitochondria synthesize the majority of ATP that fuels energetically demanding processes in the body through oxidative phosphorylation. Mitochondria alter their shape, i.e., mitochondrial morphology, and move within the cell and interact with one another, a process termed mitochondrial behavior. Modifications to mitochondrial morphology and behavior affect the process of ATP synthesis. Biomedical research has shown that abnormal mitochondrial behavior and morphology can lead to disease. However, while mitochondrial behavior and morphology are altered under extreme conditions (e.g., parasitism, starvation), limited data exist that investigate how these key changes impact typical energetically demanding animal behaviors and life history strategies. The following overarching hypotheses are being tested in two distantly related species, the aquatic copepod Tigriopus californicus and the terrestrial house mouse Mus musculus: 1) Increased expression of inner mitochondrial membrane and inter-mitochondrial junctions improve the performance of the electron transport system, and 2) Mitochondrial behavior and morphology play key roles in the performance of animals, as indicated by how they respond to low food availability, reproduction, and aging. This project utilizes an integrative approach by linking cellular processes to whole-animal performance traits and by incorporating a wide array of research tools, including transmission electron microscopy, whole-organism and mitochondrial respiration assays, cell perforation, mitochondrial protein analysis, and direct manipulations of mitochondrial function and structure, including the alteration of electrochemical gradients within the electron transport system.This project is jointly funded by the BIO-IOS-Physiological Mechanisms and Biomechanics Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
线粒体是细胞的组成部分,以化学ATP的形式产生能量,并执行许多其他核心细胞过程。该项目研究线粒体的形状和连通性如何影响细胞和整个生物体水平的能量产生。ATP几乎为体内发生的所有生理过程提供燃料,塑造了每个物种的能量利用策略和生活节奏。线粒体改变其形状(形态)并在细胞内移动以相互作用,这一过程被称为线粒体行为,似乎影响ATP的产生。以下假设正在被验证:1)线粒体形态和行为的变化增加了ATP的产生;2)线粒体行为和形态在动物的生产性能中起着关键作用,这表明它们如何应对食物供应不足、繁殖和衰老。这些想法将在两个远亲物种——桡足类动物(一种在潮汐池中发现的浮游动物)和家鼠身上得到验证。此外,对线粒体的研究将被用作阿拉巴马州科学教育和提高科学素养的平台。与当地生物教师合作,将为高中学生创建一个综合和鼓舞人心的实验室。东阿拉巴马州的教师将接受该实验室应用方面的培训。一旦完成,该实验室将提交给阿拉巴马州教育委员会进行审查。如果获得批准,它将在阿拉巴马州的每一所高中生物教室中使用。该项目还包括对研究生的培训和指导,以及与农村自然中心的合作,为600多名当地参与者提供无脊椎动物生物多样性的户外实践经验。生物体将化学能转化为ATP来支持包括生长、自我维持和繁殖在内的基本过程。线粒体通过氧化磷酸化合成大部分ATP,为体内需要能量的过程提供燃料。线粒体改变其形状,即线粒体形态,并在细胞内移动并相互作用,这一过程称为线粒体行为。线粒体形态和行为的改变影响ATP合成的过程。生物医学研究表明,异常的线粒体行为和形态可导致疾病。然而,尽管线粒体行为和形态在极端条件下(如寄生、饥饿)会发生改变,但研究这些关键变化如何影响典型的能量需求动物行为和生活史策略的数据有限。在水生桡足动物加利福尼亚虎足和陆生家鼠小家鼠这两个亲缘关系较远的物种中,研究人员对以下主要假设进行了验证:1)线粒体内膜和线粒体间连接的表达增加,提高了电子传递系统的性能;2)线粒体的行为和形态在动物的性能中起着关键作用,这表明它们如何应对食物供应不足、繁殖和衰老。该项目采用综合方法,将细胞过程与全动物生产性能特征联系起来,并结合广泛的研究工具,包括透射电子显微镜,整个生物体和线粒体呼吸测定,细胞穿孔,线粒体蛋白质分析,以及线粒体功能和结构的直接操作,包括电子传递系统内电化学梯度的改变。该项目由bio - ios -生理机制和生物力学计划和建立计划刺激竞争研究(EPSCoR)共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wendy Hood其他文献

Thomas H. Kunz
托马斯·昆兹
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Thomas H. Kunz;Christopher S Richardson;Wendy Hood;L. Allen;N. Hristov;Katherine M Ineson;Jonathan D Reichard;G. Mccracken;A. Kurta;D. Reynolds
  • 通讯作者:
    D. Reynolds

Wendy Hood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wendy Hood', 18)}}的其他基金

Meeting: Inside the black box: the mitochondrial basis of life-history variation and animal performance: January 3-7, 2018: San Francisco, CA
会议:黑匣子内部:生活史变异和动物表现的线粒体基础:2018 年 1 月 3 日至 7 日:加利福尼亚州旧金山
  • 批准号:
    1738378
  • 财政年份:
    2017
  • 资助金额:
    $ 95万
  • 项目类别:
    Standard Grant
CAREER: Effects of mitohormesis on reproduction and longevity
职业:线粒体兴奋作用对生殖和寿命的影响
  • 批准号:
    1453784
  • 财政年份:
    2015
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant
Meeting: Symposium Support for SICB 2014 stress and ornamentation
会议:SICB 2014 重音和装饰研讨会支持
  • 批准号:
    1359537
  • 财政年份:
    2013
  • 资助金额:
    $ 95万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Cell type-specific role of Src kinase in brain mitochondrial metabolism and behavior
Src 激酶在脑线粒体代谢和行为中的细胞类型特异性作用
  • 批准号:
    RGPIN-2022-03945
  • 财政年份:
    2022
  • 资助金额:
    $ 95万
  • 项目类别:
    Discovery Grants Program - Individual
Impaired hypoxia-induced mitochondrial sleep may increase malignant behavior of gastric cancer cells
缺氧引起的线粒体睡眠受损可能会增加胃癌细胞的恶性行为
  • 批准号:
    18K08650
  • 财政年份:
    2018
  • 资助金额:
    $ 95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visualization of mitochondrial behavior for oxygen environment in myocytes
心肌细胞氧环境线粒体行为的可视化
  • 批准号:
    25560335
  • 财政年份:
    2013
  • 资助金额:
    $ 95万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
The molecular mechanisms of mitochondrial behavior.
线粒体行为的分子机制。
  • 批准号:
    8672957
  • 财政年份:
    2013
  • 资助金额:
    $ 95万
  • 项目类别:
The molecular mechanisms of mitochondrial behavior.
线粒体行为的分子机制。
  • 批准号:
    8722591
  • 财政年份:
    2013
  • 资助金额:
    $ 95万
  • 项目类别:
The molecular mechanisms of mitochondrial behavior.
线粒体行为的分子机制。
  • 批准号:
    8875045
  • 财政年份:
    2013
  • 资助金额:
    $ 95万
  • 项目类别:
Mitochondrial Genome Analysis to Detect Aggressive Behavior of Premalignant Color
线粒体基因组分析检测癌前颜色的攻击行为
  • 批准号:
    8339130
  • 财政年份:
    2012
  • 资助金额:
    $ 95万
  • 项目类别:
Mitochondrial Genome Analysis to Detect Aggressive Behavior of Premalignant Color
线粒体基因组分析检测癌前颜色的攻击行为
  • 批准号:
    8536869
  • 财政年份:
    2012
  • 资助金额:
    $ 95万
  • 项目类别:
Mitochondrial Genome Analysis to Detect Aggressive Behavior of Premalignant Color
线粒体基因组分析检测癌前颜色的攻击行为
  • 批准号:
    8700424
  • 财政年份:
    2012
  • 资助金额:
    $ 95万
  • 项目类别:
Study of mitochondrial behavior as a sensor of surrounding conditions during cell proliferation and differentiation.
研究线粒体行为作为细胞增殖和分化过程中周围条件的传感器。
  • 批准号:
    24790289
  • 财政年份:
    2012
  • 资助金额:
    $ 95万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了