Collaborative Research: Enabling Large-scale Multidisciplinary Design Optimization with Unsteady Simulations: A Hybrid Pseudo-spectral Approach

协作研究:通过非定常模拟实现大规模多学科设计优化:混合伪谱方法

基本信息

  • 批准号:
    2223676
  • 负责人:
  • 金额:
    $ 24.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This project will develop a breakthrough multidisciplinary design optimization (MDO) framework that uses unsteady multiphysics computer simulations to optimize system performance automatically. The research is motivated by the lack of effective numerical algorithms to shorten the design period for large-scale engineered systems with unsteady processes, such as spacecraft, aircraft, and wind turbines. This issue is further exacerbated by ever-increasing expectations for system performance and safety. The automated MDO framework will significantly reduce the design cycle time for transformative systems that are poised to improve the nation’s economic prosperity and change how people live and connect, such as urban air taxis and systems supporting space travel. Furthermore, this project will advance the knowledge of complex mechanisms and interactions in large-scale engineered systems, which would otherwise be hard to obtain solely by human intuition. This project will also conduct educational and outreach activities for underrepresented minority and K-12 students to encourage STEM engagement, promote diversity and inclusion, and stimulate students' interest in engineering design and optimization.The research objective of this project is to enable the gradient-based multidisciplinary design optimization (MDO) of large-scale engineered systems governed by unsteady processes. The project will develop a new hybrid pseudo-spectral (HPS) adjoint algorithm to compute unsteady gradients for a broad range of disciplines efficiently. The originality of the HPS algorithm is that it effectively combines the robustness of time-accurate analysis and the speed of pseudo-spectral adjoint to enable efficient computation of high-dimensional unsteady gradients. The project will investigate the fundamental characteristics of the HPS algorithm and develop a modular architecture to couple any number of disciplines for large-scale unsteady MDO. It will demonstrate the framework by conducting urban air mobility electric aircraft and offshore wind turbine MDO that considers the unsteady coupling between fluid mechanics, structures, heat transfer, and dynamics. With further development, the framework can be extended to more disciplines, such as control and multiphase flow. The unsteady MDO framework will be open to the public to promote collaborations in the engineering design community. The HPS algorithm is general and expected to benefit many other fundamental research areas beyond MDO, including surrogate modeling, error and uncertainty analyses, and machine learning. Moreover, this project is anticipated to create a catalytic effect in the engineering design industry to transform the traditional, human-supervised design process into a more automated one.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发一种突破性的多学科设计优化(MDO)框架,该框架使用非稳态多物理计算机模拟来自动优化系统性能。这项研究的动机是缺乏有效的数值算法来缩短具有非稳定过程的大型工程系统的设计周期,如航天器、飞机和风力涡轮机。对系统性能和安全性的期望不断提高,进一步加剧了这一问题。自动化的MDO框架将显著缩短变革性系统的设计周期,这些系统有望改善国家的经济繁荣,改变人们的生活和联系方式,例如城市空中出租车和支持太空旅行的系统。此外,该项目将推进大规模工程系统中复杂机制和相互作用的知识,否则仅凭人类直觉很难获得这些知识。该项目还将为代表不足的少数族裔和K-12学生开展教育和外展活动,以鼓励STEM参与,促进多样性和包容性,并激发学生对工程设计和优化的兴趣。该项目的研究目标是使基于梯度的多学科设计优化(MDO)能够管理非稳定过程的大型工程系统。该项目将开发一种新的混合伪谱(HPS)伴随算法,以有效地计算广泛学科范围内的非定常梯度。HPS算法的创新之处在于它有效地结合了时间精确分析的稳健性和伪谱伴随的速度,从而能够有效地计算高维非定常梯度。该项目将研究HPS算法的基本特征,并开发一种模块化体系结构,以耦合任何数量的学科来进行大规模非稳定MDO。它将通过指导城市空气流动性电动飞机和海上风力涡轮机MDO来演示该框架,该MDO考虑了流体力学、结构、热传递和动力学之间的非定常耦合。随着进一步的发展,该框架可以扩展到更多的学科,如控制和多相流。不稳定的MDO框架将向公众开放,以促进工程设计社区的合作。HPS算法是通用的,预计将有助于MDO以外的许多其他基础研究领域,包括代理建模、误差和不确定性分析以及机器学习。此外,该项目预计将在工程设计行业产生催化作用,将传统的、人工监督的设计过程转变为更自动化的过程。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Duality-Preserving Adjoint Method for Segregated Navier–Stokes Solvers
分离纳维斯托克斯求解器的对偶保持伴随法
  • DOI:
    10.1016/j.jcp.2024.112860
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Fang, Lean;He, Ping
  • 通讯作者:
    He, Ping
Accelerating unsteady aerodynamic simulations using predictive reduced-order modeling
  • DOI:
    10.1016/j.ast.2023.108412
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Zilong Li;Pingjing He
  • 通讯作者:
    Zilong Li;Pingjing He
Low-Thrust Spacecraft Trajectory Optimization with Gravity-Assist Maneuver using Dymos
使用 Dymos 进行重力辅助机动的低推力航天器轨迹优化
  • DOI:
    10.2514/6.2024-0633
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harris, Gage W.;He, Ping
  • 通讯作者:
    He, Ping
A Segregated Time-Accurate Adjoint Method for Field Inversion of Unsteady Flow
  • DOI:
    10.2514/6.2024-0158
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lean Fang;Pingjing He
  • 通讯作者:
    Lean Fang;Pingjing He
High-fidelity aerodynamic and aerostructural optimization of UAV propellers using the adjoint method
  • DOI:
    10.2514/6.2023-0531
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pingjing He;Heyecan Koyuncuoglu;H. Hu;Anvesh Dhulipalla;Haiyang Hu;Hui Hu
  • 通讯作者:
    Pingjing He;Heyecan Koyuncuoglu;H. Hu;Anvesh Dhulipalla;Haiyang Hu;Hui Hu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ping He其他文献

A decision algorithm for selecting the design scheme for blockchain-based agricultural product traceability system in q-rung orthopair fuzzy environment
q-rung正对模糊环境下基于区块链的农产品追溯系统设计方案选择决策算法
  • DOI:
    10.1016/j.jclepro.2020.125191
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Zaoli Yang;Xin Li;Ping He
  • 通讯作者:
    Ping He
On-demand data broadcast with deadlines for avoiding conflicts in wireless networks
带有截止日期的点播数据广播,以避免无线网络冲突
  • DOI:
    10.1016/j.jss.2015.01.022
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Ping He;Hong Shen;Hui Tian
  • 通讯作者:
    Hui Tian
Compensation analysis with additive DEA model
利用可加 DEA 模型进行薪酬分析
Synergistic Effects of Soil-Based Irrigation and Manure Substitution for Partial Chemical Fertilizer on Potato Productivity and Profitability in Semiarid Northern China
土壤灌溉与部分化肥替代粪肥对中国北方半干旱马铃薯生产力和盈利的协同效应
  • DOI:
    10.3390/plants13121636
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ling;Rong Jiang;Ping He;Xinpeng Xu;Shaohui Huang;Hanyou Xie;Xiya Wang;Qiying Wu;Xia Zhang;Yi Yang
  • 通讯作者:
    Yi Yang
Panoramic chemical imaging of opium alkaloids in Papaver somniferum by TOF-SIMS
TOF-SIMS 全景化学成像罂粟中鸦片生物碱
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meng;Ping He;Jun Ma;Xin Yan;Dongmei Li;Chong Guo;Qingli Zeng;Lesi Cai;Siyuan Tan;Zhanping Li
  • 通讯作者:
    Zhanping Li

Ping He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ping He', 18)}}的其他基金

OSIB: Co-evolutionary dynamics of pathogen virulence and host resistance: lessons from Fusarium oxysporum-infested cotton fields
OSIB:病原体毒力和宿主抗性的共同进化动力学:尖孢镰刀菌侵染棉田的教训
  • 批准号:
    2421016
  • 财政年份:
    2023
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Continuing Grant
OSIB: Co-evolutionary dynamics of pathogen virulence and host resistance: lessons from Fusarium oxysporum-infested cotton fields
OSIB:病原体毒力和宿主抗性的共同进化动力学:尖孢镰刀菌侵染棉田的教训
  • 批准号:
    2307322
  • 财政年份:
    2023
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Continuing Grant
CAREER: Orchestrating transcriptional reprogramming by combinatorial complexity of general transcriptional regulation and specific immune responses
职业:通过一般转录调控和特异性免疫反应的组合复杂性来协调转录重编程
  • 批准号:
    1252539
  • 财政年份:
    2013
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Continuing Grant
Upgrading Biomedical Engineering Laboratory
升级生物医学工程实验室
  • 批准号:
    8951919
  • 财政年份:
    1989
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332468
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
  • 批准号:
    2311950
  • 财政年份:
    2023
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
  • 批准号:
    2317826
  • 财政年份:
    2023
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了