EAGER: A New Multiphoton Luminescence Imaging Approach to Interrogate the Fate of Metallic Nanoparticles in a Living System
EAGER:一种新的多光子发光成像方法来探究金属纳米粒子在生命系统中的命运
基本信息
- 批准号:2223834
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the last 20 years, metallic nanoparticles have been utilized across a wide range of fields from cosmetics to renewable energy to electronics to biomedical applications. Their size gives them unique properties, and the use of metallic nanoparticles has revolutionized several technological and industrial sectors. As a result, inadvertent human exposure rates to engineered metallic nanoparticles are increasing, generating the need to better understand their short- and long-term effects to ensure the public’s safety. This project will focus on utilizing a new imaging strategy that can offer important insights on how metallic nanoparticles behave in living systems. The imaging strategy is different than conventional imaging techniques in that it does not require an exogenous label to track metallic nanoparticles. Instead, the imaging strategy can detect and follow the metallic nanoparticles in a label-free manner by exploiting a luminescent signal that is generated from the metals that comprise the nanoparticles themselves. The imaging technique can offer real-time tracking of metallic nanoparticles to observe their physiological interactions while in circulation. The images generated will also be able to reveal where they ultimately reside in the body and determine if any toxic effects or morphological changes are resulting. Gaining an improved fundamental understanding of these biological interactions could 1) better discern the safety of metallic nanomaterials in living subjects, 2) lead to informing new environmental policies, 3) generate new disease targeting strategies with therapeutic metallic nanoparticles to improve patient outcome. Additionally, further development and assessment of this transformative imaging strategy could open new avenues of investigation throughout the nano-community to further exploit this unique imaging technique. Local Los Angeles high school students will be introduced to the physical concepts and imaging approaches utilized here and the various nanoparticle types encountered as environmental pollutants. The goals for the educational plan are to 1) generate enthusiasm and spark creativity among students from under-represented groups in the Los Angeles area by showing different ways that nanoparticles are used to solve problems and 2) introduce new imaging concepts to students that can allow them to watch where nanoparticles are located in the body.The research objective of this project is to explore a new multiphoton luminescence imaging strategy and its ability to develop a deeper understanding of how metallic nanoparticles behave in living systems. Researchers have previously reported on specific endpoints of nanoparticle interactions studied in cell culture on a macroscopic scale, e.g., cellular stress, inflammatory or mutagenic responses, or biodistribution profiles observed in preclinical models. However, this does not give a complete or biologically accurate depiction of how nanomaterials behave in a dynamic living system. Metallic nanoparticle biodistribution has been previously studied, but their real-time dynamics in circulation and ultimate fate are poorly understood on the microscopic level. This research project addresses this critical need by using a new and innovative multiphoton luminescence microscopy imaging approach. Intravital microscopy (IVM) has emerged as a profound imaging modality for gaining insight into dynamic processes on the cellular and sub-cellular level and is particularly suitable for visualizing nanoparticles in real time. IVM has enabled observation of several fundamental nanoparticle processes such as extravasation, tumor accumulation, and blood elimination in real time within a living organism. A current problem is that most nanoparticles must be exogenously labeled with fluorophores for visualization with conventional single-photon IVM. As the fluorophore may dissociate from the nanoparticle, it is challenging to determine the true behavior of nanoparticles within the blood stream using this approach. This project will use a new label-free multiphoton luminescence imaging approach that was recently uncovered in the principal investigator’s (PI’s) lab to study the native behavior of metallic nanoparticles in mouse models. Intrinsic broad-band luminescence has previously been observed in noble metals under multiphoton excitation conditions but has yet to be applied successfully in vivo to track nanoparticles flowing within the vasculature in real time. Luminescent properties associated with metals have yet to be applied successfully in vivo to track nanoparticles flowing within the vasculature in real time. This underutilized intrinsic luminescence will be used to 1) track metallic nanoparticles flowing in the vasculature to assess their rates of clearance from blood, and 2) determine their toxicities on major organs where they ultimately reside by analyses of harvested tissues. This is an immensely powerful tool, as the intrinsic luminescence of metallic nanoparticles could finally give the research community the ability to follow native flow in the blood while providing dynamic physiological information and ultimately localizing their accumulation within tissues on a microscopic scale. Consumers may be inadvertently exposed to various metallic nanoparticles. The results generated from this project are meant to enable a better understanding of the cellular interactions taking place within the body and where these nanoparticles ultimately reside. This information will be important in determining how to better regulate these nanomaterials as new nano-enabled products are engineered. A multi-year outreach and educational training plan will be pursued that is closely integrated with the proposed research, emphasizing how people use and encounter nanomaterials day to day. High school students from underrepresented groups across the Los Angeles area will be introduced to nanoparticles and the imaging techniques utilized to study their interactions in the body. The PI will connect with a Hispanic serving institution in her hometown, University of Texas Rio Grande Valley (UTRGV). UTRGV currently lacks Ph.D. curricula in STEM and this research opportunity will enable the participation of these students in this research lab, providing interaction with Ph.D. students. This will promote higher education paths for students who otherwise would not get exposed to these careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的 20 年里,金属纳米颗粒已被广泛应用于化妆品、可再生能源、电子产品和生物医学应用等领域。它们的尺寸赋予了它们独特的特性,金属纳米颗粒的使用已经彻底改变了多个技术和工业领域。因此,人类无意中接触工程金属纳米颗粒的比例正在增加,因此需要更好地了解其短期和长期影响,以确保公众的安全。该项目将重点利用一种新的成像策略,该策略可以提供有关金属纳米粒子在生命系统中行为方式的重要见解。该成像策略与传统成像技术的不同之处在于它不需要外源标记来跟踪金属纳米颗粒。相反,成像策略可以通过利用构成纳米颗粒本身的金属产生的发光信号,以无标记的方式检测和跟踪金属纳米颗粒。成像技术可以实时跟踪金属纳米颗粒,以观察它们在循环过程中的生理相互作用。生成的图像还将能够揭示它们最终驻留在体内的位置,并确定是否会产生任何毒性作用或形态变化。更好地了解这些生物相互作用可以:1)更好地辨别金属纳米材料在活体中的安全性,2)为新的环境政策提供信息,3)利用治疗性金属纳米颗粒制定新的疾病靶向策略,以改善患者的治疗结果。此外,这种变革性成像策略的进一步开发和评估可以为整个纳米界开辟新的研究途径,以进一步利用这种独特的成像技术。洛杉矶当地的高中生将了解这里使用的物理概念和成像方法,以及作为环境污染物遇到的各种纳米颗粒类型。该教育计划的目标是 1) 通过展示纳米颗粒解决问题的不同方式,激发来自洛杉矶地区代表性不足群体的学生的热情和创造力;2) 向学生介绍新的成像概念,使他们能够观察纳米颗粒在体内的位置。该项目的研究目标是探索一种新的多光子发光成像策略,及其深入了解纳米颗粒如何发光的能力。 金属纳米粒子在生命系统中的行为。研究人员此前曾报道过在宏观尺度的细胞培养中研究的纳米粒子相互作用的具体终点,例如细胞应激、炎症或诱变反应,或在临床前模型中观察到的生物分布特征。然而,这并没有对纳米材料在动态生命系统中的行为给出完整的或生物学上准确的描述。金属纳米粒子的生物分布先前已被研究过,但在微观层面上对其循环的实时动态和最终命运知之甚少。该研究项目通过使用新型创新的多光子发光显微镜成像方法来满足这一关键需求。活体显微镜 (IVM) 已成为一种深刻的成像方式,可深入了解细胞和亚细胞水平的动态过程,特别适合实时可视化纳米颗粒。 IVM 能够实时观察生物体内的几种基本纳米颗粒过程,例如外渗、肿瘤积聚和血液消除。当前的问题是大多数纳米粒子必须用荧光团进行外源标记,以便使用传统的单光子 IVM 进行可视化。由于荧光团可能与纳米颗粒分离,因此使用这种方法确定纳米颗粒在血流中的真实行为具有挑战性。该项目将使用首席研究员 (PI) 实验室最近发现的一种新的无标记多光子发光成像方法来研究小鼠模型中金属纳米颗粒的天然行为。先前已在多光子激发条件下在贵金属中观察到本征宽带发光,但尚未成功应用于体内实时跟踪脉管系统内流动的纳米颗粒。与金属相关的发光特性尚未成功应用于体内,以实时跟踪脉管系统内流动的纳米颗粒。这种未充分利用的内在发光将用于 1) 跟踪在脉管系统中流动的金属纳米颗粒,以评估它们从血液中的清除率,2) 通过分析收获的组织来确定它们对最终驻留的主要器官的毒性。这是一个非常强大的工具,因为金属纳米颗粒的固有发光最终可以使研究界能够跟踪血液中的自然流动,同时提供动态生理信息,并最终在微观尺度上定位它们在组织内的积累。消费者可能会无意中接触到各种金属纳米颗粒。该项目产生的结果旨在更好地了解体内发生的细胞相互作用以及这些纳米颗粒最终驻留的位置。随着新的纳米产品的设计,这些信息对于确定如何更好地调节这些纳米材料非常重要。将实施与拟议研究紧密结合的多年推广和教育培训计划,强调人们如何日常使用和接触纳米材料。来自洛杉矶地区代表性不足群体的高中生将了解纳米颗粒和用于研究它们在体内相互作用的成像技术。 PI 将与其家乡德克萨斯大学里奥格兰德河谷分校 (UTRGV) 的西班牙裔服务机构建立联系。 UTRGV 目前缺乏博士学位。 STEM 课程和这一研究机会将使这些学生能够参与该研究实验室,并与博士进行互动。学生。这将为那些原本无法接触这些职业的学生提供高等教育途径。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cristina Zavaleta其他文献
A Raman topography imaging method toward assisting surgical tumor resection
一种辅助手术肿瘤切除的拉曼形貌成像方法
- DOI:
10.1038/s44303-024-00006-6 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alexander T Czaja;Alice J. Jiang;Matt Zacchary Blanco;O. Eremina;Cristina Zavaleta - 通讯作者:
Cristina Zavaleta
Carbon nanotubes as photoacoustic molecular imaging agents in living mice
碳纳米管作为活体小鼠中的光声分子成像剂
- DOI:
10.1038/nnano.2008.231 - 发表时间:
2008-08-17 - 期刊:
- 影响因子:34.900
- 作者:
Adam De La Zerda;Cristina Zavaleta;Shay Keren;Srikant Vaithilingam;Sunil Bodapati;Zhuang Liu;Jelena Levi;Bryan R. Smith;Te-Jen Ma;Omer Oralkan;Zhen Cheng;Xiaoyuan Chen;Hongjie Dai;Butrus T. Khuri-Yakub;Sanjiv S. Gambhir - 通讯作者:
Sanjiv S. Gambhir
Actividad antimicrobiana del extracto hidroalcohólico de Piper angustifolium (Piperaceae) sobre Proteus mirabilis
奇异变形杆菌 (Proteus mirabilis) 的水醇提取物抗菌活性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Gina Zavaleta;Cristina Zavaleta;J. Saldaña;Anthony Aguilar - 通讯作者:
Anthony Aguilar
Assessment of unmixing approaches for the quantitation of SERS nanoparticles in highly multiplexed spectral images
评估高度多重光谱图像中 SERS 纳米颗粒定量的分离方法
- DOI:
10.1002/jrs.6653 - 发表时间:
2024 - 期刊:
- 影响因子:2.5
- 作者:
Alexander T Czaja;Samer Awad;O. Eremina;A. Fernando;Cristina Zavaleta - 通讯作者:
Cristina Zavaleta
Cristina Zavaleta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Multiphoton imaging in human liver tissues: validation of a new tool for drug discovery.
人体肝脏组织中的多光子成像:药物发现新工具的验证。
- 批准号:
NC/R002061/1 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Fellowship
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
9021702 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
8878595 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Development of new two-pulse correlation technique for observation and analysis of multiphoton reaction
开发用于观察和分析多光子反应的新型双脉冲相关技术
- 批准号:
24655015 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
2010 Multiphoton Processes Gordon Research Conference will be held June 6-11, 2010 at the Tilton School, Tilton, New Hampshire
2010 多光子过程戈登研究会议将于 2010 年 6 月 6 日至 11 日在新罕布什尔州蒂尔顿的蒂尔顿学校举行
- 批准号:
1016148 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Shedding new light on cells with coherent multiphoton nanoscopy
通过相干多光子纳米显微镜为细胞提供新的线索
- 批准号:
EP/I005072/1 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Fellowship
1996 Gordon Conference on Multiphoton Processes to be held in New London, New Hampshire in June 1996
1996 年戈登多光子过程会议将于 1996 年 6 月在新罕布什尔州新伦敦举行
- 批准号:
9602183 - 财政年份:1996
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
1994 Gordon Research Conference on Multiphoton Processes; Colby-Sawyer College, New London, New Hampshire,
1994 年戈登多光子过程研究会议;
- 批准号:
9404783 - 财政年份:1994
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
New Effects in Multiphoton Atomic and Molecular Processes
多光子原子和分子过程的新效应
- 批准号:
9215229 - 财政年份:1993
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
New Effects in Multiphoton Atomic and Molecular Processes (Physics)
多光子原子和分子过程的新效应(物理)
- 批准号:
9013434 - 财政年份:1990
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant














{{item.name}}会员




