New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
基本信息
- 批准号:9021702
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBiologicalBrainCell Culture TechniquesCell NucleusCell physiologyCellsCellular StructuresColorComplexConfocal MicroscopyEventFourier TransformGoalsHealthImageImage AnalysisImageryInhibitory SynapseLabelMapsMethodsMicroscopeMicroscopyMonitorMorphologyNeurobiologyNeuronsNoiseProteinsResolutionScanningSignal TransductionSpeedStructureSubcellular structureSynapsesSystemTechnologyTestingTimeTissuesVesiclebasedesigndetectorhippocampal pyramidal neuronin vivoin vivo imaginginstrumentinstrumentationmicroscopic imagingmulti-photonneocorticalnew technologynext generationnovelprotein protein interactionprotein transportsubmicrontemporal measurement
项目摘要
DESCRIPTION (provided by applicant): Spectrally-resolved imaging is ubiquitous in numerous biological studies ranging from mapping synapse dynamics, to monitoring of intracellular signaling, and studying protein-protein interactions. The ability to independently monitor the lifetime and dynamics of cellular structures, such as the synapse, the nucleus, protein trafficking vesicles, and various other multicomponent complexes is critical to revealing their cellular function as well as their assembly and disassembly. While spectrally resolved visualization of 3-4 different proteins in the same cell is quite routine using confocal microscopy
in fixed brain sections or in cell culture, dynamic multi-protein imaging in vivo remains a challenge, yet many intra- and inter- cellular interactions are dependent on the context of an intact tissue. Our goal is to develop and implement spectrally resolved technologies that are compatible with high throughput multiphoton microscopy to allow large volume, in vivo imaging of multicomponent subcellular structures. In the first two aims we propose testing two novel spectrometric approaches for large volume, high-speed imaging, with respective strengths and weaknesses, that can be tailored to tackle different imaging needs. In the third aim, we will develop a highly efficient wavelet based Poisson denoised spectral un-mixing algorithm that can potentially enhance both approaches by allowing accurate analysis of images with far lower SNR. Aim 1: Design a dispersive spectrometer (DS) to enable hyperspectral imaging in a multifocal multiphoton microscope (MMM) system utilizing multianode PMTs (MAPMT). Aim 2: Design a Fourier transform spectrometer (FTS) to enable hyperspectral imaging in MMM and wide-field multiphoton microscopy (WFMM) systems. Aim 3: Develop a morphology-guided, Poisson-denoised maximum likelihood (MLE) spectral decomposition algorithm to reduce SNR requirement of raw images.
描述(由申请人提供):光谱分辨成像在许多生物学研究中是普遍存在的,从映射突触动力学到监测细胞内信号传导和研究蛋白质-蛋白质相互作用。独立监测细胞结构(如突触、细胞核、蛋白质运输囊泡和各种其他多组分复合物)的寿命和动力学的能力对于揭示它们的细胞功能以及它们的组装和拆卸至关重要。虽然使用共聚焦显微镜在同一细胞中的3-4种不同蛋白质的光谱分辨可视化是相当常规的,
在固定的脑切片或细胞培养物中,体内动态多蛋白质成像仍然是一个挑战,然而许多细胞内和细胞间的相互作用依赖于完整组织的环境。我们的目标是开发和实施光谱分辨技术,与高通量多光子显微镜兼容,允许大容量,多组分亚细胞结构的体内成像。在前两个目标中,我们提出测试两种新的光谱方法,用于大容量,高速成像,具有各自的优点和缺点,可以定制以满足不同的成像需求。在第三个目标中,我们将开发一个高效的基于小波的泊松去噪光谱解混算法,它可以通过允许对SNR低得多的图像进行准确分析来增强这两种方法。目标1:设计一个色散光谱仪(DS),使高光谱成像的多焦多光子显微镜(MMM)系统利用多阳极光电倍增管(MAPMT)。目标2:设计一个傅里叶变换光谱仪(FTS),使MMM和宽场多光子显微镜(WFMM)系统的高光谱成像。目标三:开发一种形态学引导的泊松去噪最大似然(MLE)谱分解算法,以降低原始图像的SNR要求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elly Nedivi其他文献
Elly Nedivi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elly Nedivi', 18)}}的其他基金
Developing a Strategy for 4-Color in Vivo Two-Photon Imaging
开发体内四色双光子成像策略
- 批准号:
10577846 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10708899 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10570189 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Developing a strategy for 4-color in vivo two-photon imaging
开发 4 色体内双光子成像策略
- 批准号:
10459675 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10512611 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10467534 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9042367 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
in vivo imaging of circuit remodeling in mouse visual cortex
小鼠视觉皮层回路重塑的体内成像
- 批准号:
10207000 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
8878595 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9254550 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
相似海外基金
CAREER: Computing rules of the social brain: behavioral mechanisms of function and dysfunction in biological collectives
职业:社会大脑的计算规则:生物集体中功能和功能障碍的行为机制
- 批准号:
2338596 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
THE NIH NEUROBIOBANK BRAIN AND TISSUE REPOSITORY (NBTR) TO PROVIDE SERVICES THAT WILL ACTIVELY ACQUIRE, RECEIVE, STORE, CURATE, PRESERVE, AND DISTRIBUTE CNS AND RELATED BIOLOGICAL SPECIMENS TO QUALIFI
NIH NEUROBIOBANK 大脑和组织存储库 (NBTR) 提供积极获取、接收、存储、整理、保存和分发 CNS 及相关生物样本的服务,以确保符合资格
- 批准号:
10948523 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Investigating brain health and episodic memory function at midlife: the role of biological sex and menopause status
研究中年时的大脑健康和情景记忆功能:生物性别和更年期状态的作用
- 批准号:
494149 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Operating Grants
Understanding of biological mechanisms of resilience based on gut-brain axis
基于肠脑轴的弹性生物学机制的理解
- 批准号:
23K17634 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Understanding the link between sociocultural and biological factors to brain health across race & ethnicity in midlife
了解社会文化和生物因素与跨种族大脑健康之间的联系
- 批准号:
10429375 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Understanding the link between sociocultural and biological factors to brain health across race & ethnicity in midlife
了解社会文化和生物因素与跨种族大脑健康之间的联系
- 批准号:
10627936 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
The impact of biological sex on the brain language network
生物性别对大脑语言网络的影响
- 批准号:
RGPIN-2022-04409 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
Development of blood-brain barrier-crossing antibodies utilizing the biological features of glucose transporters
利用葡萄糖转运蛋白的生物学特性开发血脑屏障跨越抗体
- 批准号:
21K18268 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
CAREER: Biological Timing and Brain Circuits: Circadian influences on Prefrontal Cortex function
职业:生物计时和大脑回路:昼夜节律对前额皮质功能的影响
- 批准号:
2042207 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Regulation and biological functions of mRNA Alternative Polyadenylation in the Brain
大脑中 mRNA 选择性多聚腺苷酸化的调节和生物学功能
- 批准号:
10334512 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别: