Enabling new microactuation materials through understanding the influence of shear-dependent viscosities on acoustic field-driven assembly of particles
通过了解剪切相关粘度对声场驱动的颗粒组装的影响,实现新的微驱动材料
基本信息
- 批准号:2224740
- 负责人:
- 金额:$ 39.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Polymer composites may consist of mixture of a polymer (think of a liquid plastic) and very small rigid particles. The addition of such particles can enhance polymer properties and could change their functionality. For example, such composites can become electrically conductive, or change their shape (e.g., bend) in response to external stimuli such as light or heat. This could provide a powerful approach to achieve three-dimensional shapes from one or two-dimensional structures. To achieve such functionalities, an accurate design of the location of such particles in the polymer is required. This project will focus on using sound waves (i.e., pressure vibrations) to program the location and time-dependent behavior of small particles to tune the physical response of composite polymeric systems. This project will create new opportunities leading to the advancement of next-generation materials that can respond to changes in the environment. These materials can be used in designing small-scale soft robots for biomedical applications. This award will engage and train graduate and undergraduate students in subjects related to fluid mechanics, mass transfer, and inorganic and organic materials. Elements of this research will be used to create hands-on activities for K-12 students and to educate the public in collaboration with the Fleet Science Center. Existing summer research programs at the University of California San Diego will be leveraged to engage women and underrepresented minorities to promote diversity and inclusion in STEM.Manipulating the spatial distribution and assembled structure of functional nanoparticles at the micro- or nanoscale is recognized as a critical barrier to the fabrication and design of miniaturized stimuli-responsive polymer-based actuators and shape reconfigurable matter. To overcome such challenges, this project will explore the fundamental mechanism of surface acoustic wave-driven spatiotemporal distributions of nanoparticles in shear-thinning polymer solutions capable of three-dimensional shape transformation after crosslinking by understanding associated principles in physics, mechanics, and dynamics. This project will test the hypothesis that shear-thinning behaviors of polymeric fluids affect the degree of localization, the spatial distribution, and assembled structures of nanoparticles within stimuli-responsive polymer matrices under surface acoustic waves. It will further assess the time-dependent disassembly of nanoparticles after removal of surface acoustic waves by quantifying the effective viscosity of polymeric solutions in terms of polymer concentrations and surface acoustic wave-induced shear rates. This fundamental understanding will allow precise particle manipulation in more complex patterns, thereby enabling the formation of unconventional assembled features like helical structures. These outcomes will contribute to understanding the fundamental mechanism of surface acoustic wave-driven spatiotemporal assembly of nanoparticles in stimuli-responsive polymer matrices, enabling programmable shape reconfiguration and motion at the sub-mm scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
聚合物复合材料可以由聚合物(想想液体塑料)和非常小的刚性颗粒的混合物组成。添加这样的颗粒可以增强聚合物的性能,并且可以改变它们的功能。例如,这样的复合材料可以变得导电,或改变它们的形状(例如,弯曲)以响应诸如光或热的外部刺激。这可以提供一种强大的方法来从一维或二维结构获得三维形状。为了实现这些功能,需要精确设计这些颗粒在聚合物中的位置。该项目将侧重于使用声波(即,压力振动)来编程小颗粒的位置和时间依赖性行为,以调节复合聚合物体系的物理响应。该项目将创造新的机会,推动下一代材料的发展,以应对环境的变化。这些材料可用于设计用于生物医学应用的小型软机器人。该奖项将从事和培训研究生和本科生在有关流体力学,传质,无机和有机材料的科目。这项研究的内容将用于为K-12学生创造实践活动,并与舰队科学中心合作教育公众。加州圣地亚哥大学现有的暑期研究项目将被利用来吸引妇女和代表性不足的少数民族,以促进STEM的多样性和包容性。在微米或纳米尺度上操纵功能纳米颗粒的空间分布和组装结构被认为是制造和设计小型化的刺激响应聚合物基致动器和形状可重构物质的关键障碍。为了克服这些挑战,本项目将通过理解物理学、力学和动力学中的相关原理,探索表面声波驱动的纳米颗粒在剪切稀化聚合物溶液中时空分布的基本机制,该溶液能够在交联后进行三维形状转换。该项目将测试的假设,即剪切稀化行为的聚合物流体的影响程度的本地化,空间分布,和组装结构的纳米粒子在刺激响应的聚合物基质下的表面声波。它将通过量化聚合物溶液的有效粘度(根据聚合物浓度和表面声波诱导的剪切速率),进一步评估去除表面声波后纳米颗粒的时间依赖性分解。这种基本的理解将允许以更复杂的模式精确地操纵粒子,从而能够形成非常规的组装特征,如螺旋结构。这些成果将有助于理解表面声波驱动的纳米粒子在刺激响应聚合物基质中的时空组装的基本机制,从而实现亚毫米级的可编程形状重构和运动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Programmable Dual‐Responsive Actuation of Single‐Hydrogel‐Based Bilayer Actuators by Photothermal and Skin Layer Effects with Graphene Oxides
- DOI:10.1002/admi.202300169
- 发表时间:2023-08
- 期刊:
- 影响因子:5.4
- 作者:Minghao Li;J. Bae
- 通讯作者:Minghao Li;J. Bae
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinhye Bae其他文献
Polymer and Chaotropic Anion: A dual-additive strategy enables stable Zn Anode and high energy efficiency for Zn-Air/Iodide hybrid batteries
- DOI:
10.1016/j.ensm.2024.103630 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Siyuan Zhao;Jiayu Zhao;Wenlan Zhang;Yaping Yan;Jiachen Ma;Qinyang Feng;Idris Temitope Bello;Manhui Wei;Tong Liu;Jinhye Bae;Minshen Zhu;Meng Ni - 通讯作者:
Meng Ni
Advances in 4D Printing of Liquid Crystalline Elastomers: Materials, Techniques, and Applications
- DOI:
10.1039/d2mh00232a - 发表时间:
2022 - 期刊:
- 影响因子:13.3
- 作者:
Zhecun Guan;Ling Wang;Jinhye Bae - 通讯作者:
Jinhye Bae
Jinhye Bae的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
- 批准号:82371478
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
tau轻子衰变与新物理模型唯象研究
- 批准号:11005033
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
HIV gp41的NHR区新靶点的确证及高效干预
- 批准号:81072676
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
强子对撞机上新物理信号的多轻子末态研究
- 批准号:10675110
- 批准年份:2006
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 39.89万 - 项目类别:
Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
- 批准号:
2908923 - 财政年份:2027
- 资助金额:
$ 39.89万 - 项目类别:
Studentship
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 39.89万 - 项目类别:
Studentship
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Dark Data from the White Continent: New Light on Five Decades of Vertebrate Paleontology Collections from the Triassic Fremouw Formation of Antarctica
来自白色大陆的暗数据:对南极洲三叠纪 Fremouw 组的五个十年的脊椎动物古生物学收藏的新认识
- 批准号:
2313242 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
CAREER: Rank Metric Codes from Drinfeld Modules and New Primitives in Code Based Cryptography
职业:对来自 Drinfeld 模块的度量代码和基于代码的密码学中的新原语进行排名
- 批准号:
2338424 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Continuing Grant
CAREER: Development of New Gas-Releasing Molecules Using a Thiol Carrier
职业:利用硫醇载体开发新型气体释放分子
- 批准号:
2338835 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Continuing Grant
Conference: 2024 NanoFlorida Conference: New Frontiers in Nanoscale interactions
会议:2024 年纳米佛罗里达会议:纳米尺度相互作用的新前沿
- 批准号:
2415310 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant