Tailoring Personalized Mathematics Education for High School Students Using Dynamic Treatment Regimes

使用动态治疗方案为高中生量身定制个性化数学教育

基本信息

  • 批准号:
    2225321
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

The current math course-taking plan for high school students across much of the United States is not optimized for every student’s success in math, especially in advanced mathematics. In particular, there has been disproportional participation in advanced math courses among different racial/ethnic and income groups. To this end, this research project develops data-driven, personalized math course-taking plans by leveraging recent advances in personalized medicine. In personalized medicine, clinicians, with the help of machine learning, use past and current historical patient data to tailor patient-specific treatment plans. In a similar vein, the proposed data-driven, personalized course-taking plan recommends appropriate math courses for students at the opportune time by using large-scale educational data from current and past students’ performances. Additionally, the project incorporates algorithmic fairness constraints from computer science and statistics to ensure that the recommendations reduce existing disparities in course-taking patterns among racial/ethnic and income groups. More broadly, with the proposed, data-driven personalized recommendations, the project hopes to transform how students take math courses (or more broadly, K-12 STEM courses) so that every student, especially students from underrepresented or disadvantaged backgrounds, will opportunities to pursue STEM majors and careers. To develop personalized math course-taking plans, the project uses a set of statistical techniques known as optimal dynamic treatment regimes (OTRs). A crucial step in using OTRs is understanding treatment effect heterogeneity from the collected data. Consequently, the first aim of the project is to leverage the existing work on using machine learning to estimate heterogeneous effects of taking different math courses in large-scale educational studies. Next, the project uses Q-learning, A-learning, and value search methods to develop OTRs, specifically sequential decisions for math course-taking. Finally, to mitigate fairness-related harms in the proposed OTRs and to ensure that the OTRs do not produce discriminatory recommendations, the project utilizes fairness constraints from the algorithmic fairness literature. The project will translate the current state-of-the-art OTR methods into K- 12 math education policies and will constitute the first attempt to integrate algorithmic fairness and optimal policy learning to design equitable policies for STEM education. The project is supported by NSF's EHR Core Research Building Capacity in STEM Education Research (ECR: BCSER) program, which is designed to build investigator's capacity to carry out high-quality STEM education research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前美国大部分地区高中生的数学课程计划并没有针对每个学生在数学方面的成功进行优化,特别是在高等数学方面。特别是,不同种族/族裔和收入群体参加高等数学课程的人数不成比例。为此,该研究项目通过利用个性化医学的最新进展,开发数据驱动的个性化数学课程学习计划。在个性化医疗中,临床医生在机器学习的帮助下,使用过去和当前的历史患者数据来定制患者特定的治疗计划。同样,拟议的数据驱动的个性化课程计划通过使用当前和过去学生表现的大规模教育数据,在适当的时候为学生推荐合适的数学课程。此外,该项目还纳入了计算机科学和统计学的算法公平性约束,以确保建议减少种族/民族和收入群体之间现有的课程学习模式差异。更广泛地说,通过提出的数据驱动的个性化建议,该项目希望改变学生学习数学课程(或更广泛地说,K-12 STEM课程)的方式,以便每个学生,特别是来自代表性不足或弱势背景的学生,都有机会追求STEM专业和职业。为了制定个性化的数学课程学习计划,该项目使用了一套被称为最佳动态治疗方案(OTR)的统计技术。使用OTR的关键步骤是从收集的数据中了解治疗效果的异质性。因此,该项目的第一个目标是利用现有的工作,使用机器学习来估计在大规模教育研究中学习不同数学课程的异质性影响。接下来,该项目使用Q-learning、A-learning和价值搜索方法来开发OTR,特别是数学课程学习的顺序决策。最后,为了减轻拟议的OTR中与公平相关的危害,并确保OTR不会产生歧视性建议,该项目利用算法公平文献中的公平约束。该项目将把当前最先进的OTR方法转化为K- 12数学教育政策,并将首次尝试整合算法公平性和最优政策学习,为STEM教育设计公平的政策。该项目由NSF的EHR Core Research Building Capacity in STEM Education Research(ECR:BCSER)项目提供支持,该项目旨在培养研究者开展高质量STEM教育研究的能力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designing Optimal, Data-Driven Policies from Multisite Randomized Trials
根据多站点随机试验设计最佳的数据驱动策略
  • DOI:
    10.1007/s11336-023-09937-2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Suk, Youmi;Park, Chan
  • 通讯作者:
    Park, Chan
A Psychometric Framework for Evaluating Fairness in Algorithmic Decision Making: Differential Algorithmic Functioning
用于评估算法决策公平性的心理测量框架:微分算法功能
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Youmi Suk其他文献

A Within-Group Approach to Ensemble Machine Learning Methods for Causal Inference in Multilevel Studies
Hybridizing Machine Learning Methods and Finite Mixture Models for Estimating Heterogeneous Treatment Effects in Latent Classes
混合机器学习方法和有限混合模型来估计潜在类别中的异质处理效果
Profile Analysis of Elementary School Students’ Smart Device Usage
小学生智能设备使用概况分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Youmi Suk;Y. Cho;Dae
  • 通讯作者:
    Dae
Measuring the Heterogeneity of Treatment Effects with Multilevel Observational Data
用多级观察数据衡量治疗效果的异质性
Random Forests Approach for Causal Inference with Clustered Observational Data
使用聚类观测数据进行因果推断的随机森林方法
  • DOI:
    10.1080/00273171.2020.1808437
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Youmi Suk;Hyunseung Kang;Jee
  • 通讯作者:
    Jee

Youmi Suk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Personalized Online Adaptive Learning System
个性化在线自适应学习系统
  • 批准号:
    23K20186
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Personalized Maternal Care Decision Support System for Underserved Populations
职业:针对服务不足人群的个性化孕产妇护理决策支持系统
  • 批准号:
    2339992
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Realizing Human Brain Stimulation of Deep Regions Based on Novel Personalized Electrical Computational Modelling
基于新型个性化电计算模型实现人脑深部刺激
  • 批准号:
    23K25176
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
  • 批准号:
    10103541
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    EU-Funded
Modular Laser Sources For Sustainable Production Of Short Personalized Production Series (WAVETAILOR)
用于短个性化生产系列可持续生产的模块化激光源 (WAVETAILOR)
  • 批准号:
    10091981
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    EU-Funded
5G4PHealth: Enhanced 5G-Powered Platform for Predictive Preventive Personalized and Participatory Healthcare
5G4PHealth:增强型 5G 支持平台,用于预测、预防、个性化和参与式医疗保健
  • 批准号:
    10093679
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Collaborative R&D
Biomarker-Based Platform for Early Diagnosis of Chronic Liver Disease to Enable Personalized Therapy (LIVERAIM)
基于生物标志物的慢性肝病早期诊断平台,以实现个性化治疗(LIVERAIM)
  • 批准号:
    10087822
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    EU-Funded
HSI Implementation and Evaluation Project: Increasing Computer Science Undergraduate Retention through Predictive Modeling and Early, Personalized Academic Interventions
HSI 实施和评估项目:通过预测建模和早期个性化学术干预提高计算机科学本科生的保留率
  • 批准号:
    2345378
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
  • 批准号:
    2345655
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了