Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
基本信息
- 批准号:2225369
- 负责人:
- 金额:$ 49.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical DescriptionThe growth of the information economy and the rising importance of artificial intelligence are driving a need for dramatically increased computing power. Such demands cannot be met at the required pace using existing semiconductor technologies. In addition, energy requirements to power the massive increase in computing and data storage may present a serious limitation to how much and how fast information can be processed. New energy-efficient technologies are therefore urgently needed. This research project brings together a team with combined expertise in theory, synthesis, and advanced characterization. The team will design and synthesize novel molecules and develop new characterization methods in order to pave the way to electronic devices that operate at the ultimate size limit of single molecules. This research will enable efficient charge flow and switching in single molecules and allow for the creation of high-density low-power electronics. The investigators will further demonstrate how quantum phenomena can be used in single molecule devices to encode information in new and efficient ways, and to minimize power consumption in high-density molecular arrays. The research team will train undergraduate and graduate students from underrepresented groups, educate future scientific leaders from traditionally underserved rural and urban communities, and involve veterans who transition from the armed services into higher education.Technical DescriptionDespite extensive research to understand quantum transport in single molecule electronic devices, a predictive and generalizable molecular-level understanding of how to systematically tailor charge- and spin-transport through molecules is still missing. The emergence of such an understanding is hampered by the complex many-body interactions at the molecule-electrode interface and the wide variation of different molecular constructs investigated. The proposed theory-driven research addresses this challenge by i) systematically varying the organic semiconductor framework to tailor the combined molecule/electrode system, to capture the outsized influence of interfacial interactions on energy level alignment and hence conductance in single molecule junctions; and ii) seeking to significantly enhance charge-transport or to create pathways towards spin-polarized current using systematically designed all-organic radicals. Insights from the proposed research provide new design rules for controlling charge-flow in single molecules and across molecule-electrode interfaces at will. Investigators will also develop key principles that enable the flow of spin-current without the need for ferromagnetic electrodes. These issues are fundamental themes in the materials science of organic semiconductors that transcend the specific classes of molecules and the specific challenges of quantum transport in single molecules. They pertain to the field of organic electronics more broadly, encompassing molecular and thin film organic electronics. The synergistic research, combining synthesis of new materials, materials by design and characterization at the single molecule limit, lays the foundation for improved energy-efficiency in high-performance computing and data analysis, which ultimately enables new information processing modalities with potentially unprecedented impact on US manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述信息经济的增长和人工智能的重要性不断上升,推动了对计算能力的需求急剧增加。使用现有的半导体技术无法以所需的速度满足这些需求。此外,为计算和数据存储的大规模增长提供动力的能源需求可能会严重限制信息的处理量和速度。因此,迫切需要新的节能技术。该研究项目汇集了一个在理论,合成和高级表征方面具有综合专业知识的团队。该团队将设计和合成新型分子,并开发新的表征方法,为在单分子的极限尺寸下工作的电子设备铺平道路。这项研究将使单个分子中的有效电荷流动和开关成为可能,并允许创建高密度低功率电子器件。研究人员将进一步展示量子现象如何用于单分子器件,以新的有效方式编码信息,并最大限度地减少高密度分子阵列的功耗。该研究小组将培训来自代表性不足群体的本科生和研究生,教育来自传统上服务不足的农村和城市社区的未来科学领导者,并涉及从武装部队过渡到高等教育的退伍军人。技术描述尽管进行了广泛的研究来理解单分子电子设备中的量子传输,仍然缺少对如何系统地定制通过分子的电荷和自旋传输的预测性和可推广的分子水平的理解。这种理解的出现受到分子-电极界面处复杂的多体相互作用和所研究的不同分子结构的广泛变化的阻碍。所提出的理论驱动的研究通过以下方式解决了这一挑战:i)系统地改变有机半导体框架以定制组合的分子/电极系统,以捕获界面相互作用对能级排列的巨大影响,从而在单分子结中获得电导; ii)寻求显着增强电荷传输或使用系统设计的全有机自由基创建朝向自旋极化电流的路径。从拟议的研究中获得的见解提供了新的设计规则,用于随意控制单分子和分子电极界面之间的电荷流。研究人员还将开发关键原则,使自旋电流的流动,而不需要铁磁电极。这些问题是有机半导体材料科学的基本主题,超越了特定类别的分子和单分子量子传输的特定挑战。它们更广泛地属于有机电子领域,包括分子和薄膜有机电子。协同研究结合了新材料的合成、材料设计和单分子极限表征,为提高高性能计算和数据分析的能效奠定了基础,该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Monti其他文献
Oliver Monti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Monti', 18)}}的其他基金
Understanding Electronic and Spin Structure at Organic / Metal Interfaces: Surfaces and Symmetry
了解有机/金属界面的电子和自旋结构:表面和对称性
- 批准号:
1954571 - 财政年份:2020
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Electronic Structure in Single Molecule Transport
单分子传输中的电子结构
- 批准号:
1708443 - 财政年份:2017
- 资助金额:
$ 49.63万 - 项目类别:
Continuing Grant
Developing Structure-Property Relationships for Electronic Structure and Dynamics at Organic Semiconductor Interfaces
建立有机半导体界面电子结构和动力学的结构-性能关系
- 批准号:
1565497 - 财政年份:2016
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Structure and Dynamics at Organic Semiconductor Interfaces: The Influence of Molecular Electronic Structure
有机半导体界面的结构和动力学:分子电子结构的影响
- 批准号:
1213243 - 财政年份:2012
- 资助金额:
$ 49.63万 - 项目类别:
Continuing Grant
Development of a Spatially Resolved Photoionization Microscope for Chemically Selective Mesoscale Spectroscopy in Organic Photovoltaic Cells
开发用于有机光伏电池化学选择性介观光谱的空间分辨光电离显微镜
- 批准号:
0618477 - 财政年份:2006
- 资助金额:
$ 49.63万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
- 批准号:
2225370 - 财政年份:2023
- 资助金额:
$ 49.63万 - 项目类别:
Continuing Grant
Collaborative Research: Tailoring the Catalytic Properties of Pd Single Atoms Using Covalent Organic Frameworks
合作研究:利用共价有机框架定制 Pd 单原子的催化性能
- 批准号:
2308630 - 财政年份:2023
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Collaborative Research: Tailoring the Catalytic Properties of Pd Single Atoms Using Covalent Organic Frameworks
合作研究:利用共价有机框架定制 Pd 单原子的催化性能
- 批准号:
2308631 - 财政年份:2023
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
- 批准号:
2312247 - 财政年份:2023
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
- 批准号:
2209819 - 财政年份:2022
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
- 批准号:
2209821 - 财政年份:2022
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
- 批准号:
2209823 - 财政年份:2022
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154398 - 财政年份:2022
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
- 批准号:
2038082 - 财政年份:2021
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant