Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks

合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案

基本信息

  • 批准号:
    2225577
  • 负责人:
  • 金额:
    $ 28.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Over the last few years, discussions oriented toward defining sixth generation (6G) requirements and possible technologies have started to circulate within the wireless community. One of the key ideas will likely be to take steps to remove the conventional cell boundaries and facilitate enhanced joint uplink and downlink processing using many dispersed access points (APs). These ideas fall within the academic definition of cell-free massive multiple-input multiple-output (CFmMIMO). It alleviates the existing cell-edge and handover problems and improves energy efficiency. The primary limiting factor is achieving cell-free operation in a practically feasible way, with computational complexity and fronthaul requirements that are scalable to large networks with many users. This poses many important research questions that must be explored systematically and in-depth. This project firstly develops scalable artificial intelligence (AI)-based solutions. Together with the appropriate (cost-efficient) AP deployment planning tools (e.g., where to put the APs), these developments constitute a significant step toward enabling the low-latency and uniformly reliable wireless services at a lower cost. Given the international nature of the project, the project contributes to the development of a diverse workforce in AI and 6G wireless networks through the formation of international research teams integrating undergraduate and graduate students. Project research activities are organized into three thrusts. Thrust 1 develops scalable AI-based resource allocation solutions enabling the implementation of large-scale CFmMIMO. The developed solutions are further enhanced by exploring AI architectures applicable to large networks. This includes the security aspects, especially in the context of AI algorithms and architecture, and the cloud radio access network. Thrust 2 focuses on establishing network planning and waveform constraints to address scalable deployment solutions. This includes the development of infrastructure-aware minimum-cost AP deployment methodologies by taking into account the QoS requirements and available transport infrastructure. The developed methodologies are further augmented by developing a network-wide user signal detection method, accounting for the fronthaul capacity and the quantization resolution at each AP. This task also investigates how CFmMIMO can address many of today’s most challenging spectrum policy issues. Evaluation Thrust evaluates and analyzes the methodologies developed in Thrusts 1&2. This employs the existing US and European experimental testbeds and provides a continuous feedback cycle between theory and experimentation. The US team will build upon the prior experience with Colosseum. On the European side, the team will experiment with the Open Air Interface (OAI).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几年中,面向定义第六代(6G)需求和可能的技术的讨论已经开始在无线社区中传播。关键思想之一将可能是采取步骤来去除传统的小区边界,并使用许多分散的接入点(AP)来促进增强的联合上行链路和下行链路处理。这些想法属于无小区大规模多输入多输出(CFmMIMO)的学术定义。它解决了现有的小区边缘和切换问题,提高了能量效率。主要限制因素是以实际可行的方式实现无小区操作,具有可扩展到具有许多用户的大型网络的计算复杂性和前传要求。这就提出了许多重要的研究问题,必须进行系统和深入的探讨。该项目首先开发基于可扩展人工智能(AI)的解决方案。与适当的(具有成本效益的)AP部署规划工具(例如,AP的位置),这些发展构成了以较低成本实现低延迟和一致可靠的无线服务的重要一步。鉴于该项目的国际性质,该项目通过组建整合本科生和研究生的国际研究团队,为人工智能和6G无线网络的多元化劳动力的发展做出了贡献。项目研究活动分为三个重点。Thrust 1开发可扩展的基于AI的资源分配解决方案,实现大规模CFmMIMO。通过探索适用于大型网络的AI架构,进一步增强了开发的解决方案。这包括安全方面,特别是在人工智能算法和架构以及云无线电接入网络的背景下。第2个目标的重点是建立网络规划和波形约束,以解决可扩展的部署解决方案。这包括通过考虑QoS要求和可用的传输基础设施来开发基础设施感知的最低成本AP部署方法。所开发的方法通过开发网络范围的用户信号检测方法来进一步增强,考虑到每个AP处的前传容量和量化分辨率。该任务还研究了CFmMIMO如何解决当今许多最具挑战性的频谱政策问题。评估推力评估和分析的推力1 2开发的方法。这采用了现有的美国和欧洲的实验测试平台,并提供了理论和实验之间的连续反馈周期。美国队将建立在以前的经验与斗兽场。在欧洲方面,该团队将试验开放式空气接口(OAI)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cost-Optimal Deployment of Millimeter-Wave Base Stations Under Outage Requirement
  • DOI:
    10.1109/twc.2022.3185094
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Miaomiao Dong;Minsung Cho;Kangeun Lee;Sungrok Yoon;Taejoon Kim
  • 通讯作者:
    Miaomiao Dong;Minsung Cho;Kangeun Lee;Sungrok Yoon;Taejoon Kim
Time-Varying Noise Perturbation and Power Control for Differential-Privacy-Preserving Wireless Federated Learning
Successful Recovery Performance Guarantees of SOMP Under the $\ell _{2}$-Norm of Noise
Joint Hybrid Delay-Phase Precoding Under True-Time Delay Constraints in Wideband THz Massive MIMO Systems
宽带太赫兹大规模 MIMO 系统中实时延迟约束下的联合混合延迟相位预编码
Robust Non-Linear Feedback Coding via Power-Constrained Deep Learning
  • DOI:
    10.48550/arxiv.2304.13178
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junghoon Kim;Taejoon Kim;D. Love;Christopher G. Brinton
  • 通讯作者:
    Junghoon Kim;Taejoon Kim;D. Love;Christopher G. Brinton
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taejoon Kim其他文献

A Hybrid Cache Architecture for Meeting Per-Tenant Performance Goals in a Private Cloud
用于满足私有云中每个租户性能目标的混合缓存架构
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taejoon Kim;Yu Gu;Jinoh Kim
  • 通讯作者:
    Jinoh Kim
Leveraging subspace information for low-rank matrix reconstruction
利用子空间信息进行低秩矩阵重建
  • DOI:
    10.1016/j.sigpro.2019.05.013
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Zhang;Taejoon Kim;Guojun Xiong;S. Leung
  • 通讯作者:
    S. Leung
A Sequential Subspace Method for Millimeter Wave MIMO Channel Estimation
毫米波MIMO信道估计的顺序子空间方法
Design optimization of heat exchanger using deep reinforcement learning
  • DOI:
    10.1016/j.icheatmasstransfer.2024.107991
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Geunhyeong Lee;Younghwan Joo;Sung-Uk Lee;Taejoon Kim;Yonggyun Yu;Hyun-Gil Kim
  • 通讯作者:
    Hyun-Gil Kim
Interference Analysis for Millimeter-Wave Networks With Geometry-Dependent First-Order Reflections
具有几何相关一阶反射的毫米波网络的干扰分析

Taejoon Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taejoon Kim', 18)}}的其他基金

NSF Convergence Accelerator Track G: Combating Vulnerability and Unawareness in 5G Network Security
NSF 融合加速器轨道 G:对抗 5G 网络安全中的漏洞和无意识
  • 批准号:
    2326898
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Cooperative Agreement
GOALI: CNS: Medium: Communication-Computation Co-Design for Rural Connectivtiy and Intelligence under Nonuniformity: Modeling, Analysis, and Implementation
目标:CNS:媒介:非均匀性下农村互联和智能的通信计算协同设计:建模、分析和实现
  • 批准号:
    2212565
  • 财政年份:
    2022
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track G: Combating Vulnerability and Unawareness in 5G Network Security: Signaling and Full-Stack Approach
NSF 融合加速器轨道 G:对抗 5G 网络安全中的漏洞和无意识:信令和全栈方法
  • 批准号:
    2226447
  • 财政年份:
    2022
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了