NSF Convergence Accelerator Track G: Combating Vulnerability and Unawareness in 5G Network Security
NSF 融合加速器轨道 G:对抗 5G 网络安全中的漏洞和无意识
基本信息
- 批准号:2326898
- 负责人:
- 金额:$ 500万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Reliable and high-rate 5G wireless access has become a global necessity; however, the US has fallen behind in wireless leadership, lacking major radio access network (RAN) or cellular network manufacturers. Furthermore, cellular networks have not been designed for mission-critical communications and have exposed several security vulnerabilities. Consequently, the Department of Defense (DoD) faces challenges in using commercial off-the-shelf 5G products and commercial networks for US military operations. The Zero Trust X (ZTX) team, a consortium of interdisciplinary experts in the field of 5G and security, will research and develop a family of security solutions to establish a Zero Trust Chain (ZTC) that enables end-to-end security and protection for reliable use of 5G networks for DoD use cases. The proposed effort will generate knowledge and research outcomes tailored for use by US industry and DoD. Additionally, the project will train a diverse team of students in research and provide open-source software that facilitates portability, reproducibility, and integration with other Track G solutions of this program.The project's specific goal is to develop the ZTC software that enables military squads to securely share situational awareness in their operations using high-performance, yet often untrusted, 5G networks. The software solution leverages the flexibility of the 5G standard and implements innovative security solutions at different network nodes and layers to empower DoD operators to detect malicious entities in near-real time and establish communication mechanisms to prevent access to or control over DoD traffic. Specifically, through minimal cooperation with 5G network operators, part of the ZTC solution leverages Open-RAN (O-RAN) and 5G core-centric approaches for practical threat monitoring and mitigation. This is complemented by device-centric security enhancements to ensure that DoD devices also implement their own layer of security and do not solely depend on the security protocols of the network provider. Six key features set ZTC apart from other solutions: (i) it builds on the Open Artificial Intelligence Cellular (OAIC) platform for developing O-RAN threat monitoring and mitigation through RAN Intelligent Controllers; (ii) it offers end-to-end secure slicing across the 5G RAN and Core; (iii) it detects threats at user devices in near-real time; (iv) it protects communication through innovation at the application layer rather than modifying existing 5G physical layer protocols and algorithms; (v) it ensures location privacy and resiliency to unknown/unanticipated denial of service (DoS) attacks; and (vi) it does not require modifications to public 5G/O-RAN networks and standards, and only requires installation of low-overhead software modules on 5G user devices and cooperative 5G networks. The ZTX team's work is applicable to commercial and military 5G communication networks and to O-RAN. The ZTX team will implement and experimentally evaluate the proposed ZTC initially on a laboratory-scale integrated 5G/O-RAN testbed, and subsequently on other available testbeds to prepare for commercial transition. The team will apply Convergence Accelerator fundamentals to foster partnerships and to develop a sustainability model with an impact extending well beyond Phase 2 of the program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可靠和高速率的5G无线接入已成为全球必需品;然而,美国在无线领导方面落后,缺乏主要的无线电接入网络(RAN)或蜂窝网络制造商。 此外,蜂窝网络不是为关键任务通信而设计的,并且暴露了几个安全漏洞。因此,国防部(DoD)在使用商用现成5G产品和商业网络用于美国军事行动方面面临挑战。Zero Trust X(ZTX)团队是5G和安全领域的跨学科专家联盟,将研究和开发一系列安全解决方案,以建立零信任链(ZTC),从而实现端到端的安全和保护,以便在国防部用例中可靠地使用5G网络。拟议的努力将产生专门为美国工业和国防部使用的知识和研究成果。此外,该项目还将培养一支多元化的学生研究团队,并提供开源软件,以促进可移植性、可重复性以及与该项目的其他Track G解决方案的集成。该项目的具体目标是开发ZTC软件,使军事小组能够使用高性能但通常不可信的5G网络在其行动中安全地共享态势感知。该软件解决方案利用5G标准的灵活性,在不同的网络节点和层实施创新的安全解决方案,使国防部运营商能够近实时地检测恶意实体,并建立通信机制,以防止访问或控制国防部流量。具体而言,通过与5G网络运营商的最小合作,ZTC解决方案的一部分利用Open-RAN(O-RAN)和5G核心为中心的方法进行实际的威胁监控和缓解。这是由以设备为中心的安全增强功能补充,以确保国防部设备也实现自己的安全层,而不仅仅依赖于网络提供商的安全协议。ZTC与其他解决方案不同的六个关键特性:(i)它建立在开放人工智能蜂窝(OAIC)平台上,通过RAN智能控制器开发O-RAN威胁监控和缓解;(ii)它提供跨5G RAN和核心的端到端安全切片;(iii)它近实时地检测用户设备上的威胁;(iv)它通过应用层的创新而不是修改现有的5G物理层协议和算法来保护通信;(v)它确保位置隐私和对未知/意外拒绝服务(DoS)攻击的弹性;以及(vi)它不需要修改公共5G/O-RAN网络和标准,并且仅需要在5G用户设备和协作5G网络上安装低开销软件模块。ZTX团队的工作适用于商用和军用5G通信网络以及O-RAN。ZTX团队将首先在实验室规模的集成5G/O-RAN测试平台上实施和实验评估拟议的ZTC,随后在其他可用的测试平台上实施,为商业过渡做准备。该团队将应用Convergence Accelerator的基本原理来促进合作伙伴关系,并开发一种可持续发展模式,其影响远远超出该计划的第二阶段。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time-Varying Noise Perturbation and Power Control for Differential-Privacy-Preserving Wireless Federated Learning
- DOI:10.1109/ieeeconf59524.2023.10476780
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Dang Qua Nguyen;Taejoon Kim
- 通讯作者:Dang Qua Nguyen;Taejoon Kim
A Decentralized Pilot Assignment Algorithm for Scalable O-RAN Cell-Free Massive MIMO
- DOI:10.1109/jsac.2023.3336154
- 发表时间:2023-01
- 期刊:
- 影响因子:16.4
- 作者:M. Oh;A. Das;Seyyedali Hosseinalipour;Taejoon Kim;D. Love;Christopher G. Brinton
- 通讯作者:M. Oh;A. Das;Seyyedali Hosseinalipour;Taejoon Kim;D. Love;Christopher G. Brinton
Demo: SSxApp: Secure Slicing for O-RAN Deployments
演示:SSxApp:O-RAN 部署的安全切片
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Moore, Joshua;Abdalla, Aly;Zhang, Minglong;Marojevic, Vuk
- 通讯作者:Marojevic, Vuk
Successful Recovery Performance Guarantees of SOMP Under the $\ell _{2}$-Norm of Noise
- DOI:10.1109/tvt.2023.3315325
- 发表时间:2021-08
- 期刊:
- 影响因子:6.8
- 作者:W. Zhang;Taejoon Kim
- 通讯作者:W. Zhang;Taejoon Kim
Toward Secure and Efficient O-RAN Deployments: Secure Slicing xApp Use Case
实现安全高效的 O-RAN 部署:安全切片 xApp 用例
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Moore, Joshua;Adhikari, Nisha;Abdalla, Aly S.;Marojevic, Vuk
- 通讯作者:Marojevic, Vuk
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taejoon Kim其他文献
A Hybrid Cache Architecture for Meeting Per-Tenant Performance Goals in a Private Cloud
用于满足私有云中每个租户性能目标的混合缓存架构
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Taejoon Kim;Yu Gu;Jinoh Kim - 通讯作者:
Jinoh Kim
Leveraging subspace information for low-rank matrix reconstruction
利用子空间信息进行低秩矩阵重建
- DOI:
10.1016/j.sigpro.2019.05.013 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Wei Zhang;Taejoon Kim;Guojun Xiong;S. Leung - 通讯作者:
S. Leung
A Sequential Subspace Method for Millimeter Wave MIMO Channel Estimation
毫米波MIMO信道估计的顺序子空间方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:6.8
- 作者:
Wei Zhang;Taejoon Kim;S. Leung - 通讯作者:
S. Leung
Design optimization of heat exchanger using deep reinforcement learning
- DOI:
10.1016/j.icheatmasstransfer.2024.107991 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Geunhyeong Lee;Younghwan Joo;Sung-Uk Lee;Taejoon Kim;Yonggyun Yu;Hyun-Gil Kim - 通讯作者:
Hyun-Gil Kim
Interference Analysis for Millimeter-Wave Networks With Geometry-Dependent First-Order Reflections
具有几何相关一阶反射的毫米波网络的干扰分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:6.8
- 作者:
Miaomiao Dong;Taejoon Kim - 通讯作者:
Taejoon Kim
Taejoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taejoon Kim', 18)}}的其他基金
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225577 - 财政年份:2023
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
GOALI: CNS: Medium: Communication-Computation Co-Design for Rural Connectivtiy and Intelligence under Nonuniformity: Modeling, Analysis, and Implementation
目标:CNS:媒介:非均匀性下农村互联和智能的通信计算协同设计:建模、分析和实现
- 批准号:
2212565 - 财政年份:2022
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track G: Combating Vulnerability and Unawareness in 5G Network Security: Signaling and Full-Stack Approach
NSF 融合加速器轨道 G:对抗 5G 网络安全中的漏洞和无意识:信令和全栈方法
- 批准号:
2226447 - 财政年份:2022
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant














{{item.name}}会员




