From Limited Data to the Deformation Field in Metals: A Machine Learning Driven Approach

从有限数据到金属变形场:机器学习驱动的方法

基本信息

  • 批准号:
    2225675
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Having warning before a catastrophic failure of a material occurs can save lives and reduce costs. Prior to failure a material may undergo internal changes which generate high-frequency stress waves, referred to as acoustic emissions. Measurements of acoustic emissions in metals provide a unique approach for quantifying defects and their movements. However, interpreting acoustic emissions is a longstanding challenge. This research will address this challenge by identifying and decoding the distinct acoustic emission signatures of each deformation mechanism with a combination of experiments and machine learning tools. This research will result in a unique method that endows experiments with a window into the fundamental deformation mechanisms that are not currently accessible from surface measurements alone. This will enable new basic knowledge of the behavior of metals during deformation. This research is also integrated with education and outreach. Results from this work will be integrated into a new course on machine learning for solid mechanics and materials engineering. Maryland high-school students from under-served/under-represented groups will also be engaged in research internship opportunities. We will utilize integrated physics-based modeling, machine learning, and experiments to: (1) develop a “digital twin’’ of acoustic emission experiments to forward predict the acoustic emission surface waves associated with complex slip avalanches during the deformation of single crystal Ni micropillars; (2) definitively assess/scrutinize existing phenomenological acoustic emission models in literature, and develop new physics-based theoretical models that identify the interconnections between dislocation-based plasticity and acoustic emission signals; (3) predict the true experimentally observed slip localization in the 3D volume from the surface acoustic emission measurements; (4) train deep operator networks (DeepONets) for forward predictions of acoustic emission and inverse predictions of the underlying deformation mechanisms; and (5) validate the forward and inverse predictions through coupled in situ scanning electron microscopy microcompression experiments and acoustic emission measurements on single-crystal Ni microcrystals. To close the loop between the developed models and the experiments, we will also utilize the trained DeepONets on the experimental results to gain fundamental understanding of the underlying deformation mechanisms during dislocation avalanches in micro-compression experiments, which are currently difficult to interpret based on surface measurements and load-displacement measurements alone.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在材料发生灾难性故障之前发出警告可以挽救生命并降低成本。在失效之前,材料可能会发生内部变化,产生高频应力波,称为声发射。金属中声发射的测量为量化缺陷及其运动提供了一种独特的方法。然而,解释声发射是一个长期的挑战。这项研究将通过结合实验和机器学习工具识别和解码每个变形机制的不同声发射特征来应对这一挑战。这项研究将产生一种独特的方法,赋予实验一个窗口,进入基本的变形机制,目前无法从表面测量单独访问。这将使人们对金属在变形过程中的行为有新的基本认识。这项研究还与教育和外联相结合。这项工作的结果将被整合到固体力学和材料工程的机器学习新课程中。来自服务不足/代表性不足群体的马里兰州高中学生也将参与研究实习机会。我们将利用基于物理的建模、机器学习和实验相结合的方法:(1)开发声发射实验的“数字孪生”,以预测单晶Ni微柱变形过程中与复杂滑动雪崩相关的声发射表面波;(2)明确地评估/审查文献中现有的现象学声发射模型,并建立新的基于物理学的理论模型,以识别基于位错的塑性和声发射信号之间的相互联系:(3)从表面声发射测量结果预测真实的实验观察到的三维体积中的滑移局部化;(4)培养深度运营商网络(DeepONets)用于声发射的正向预测和潜在变形机制的反向预测;以及(5)通过耦合原位扫描电子显微镜微压缩实验和声发射测量验证正向和反向预测,单晶Ni微晶。为了关闭开发的模型和实验之间的循环,我们还将利用经过训练的DeepONets对实验结果进行分析,以获得对微压缩实验中位错雪崩过程中潜在变形机制的基本理解,目前很难根据表面测量和负载来解释,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The three-dimensional elastodynamic solution for dislocation plasticity and its implementation in discrete dislocation dynamics simulations
位错塑性的三维弹动力解及其在离散位错动力学模拟中的实现
  • DOI:
    10.1016/j.actamat.2023.118945
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Yang, Junjie;Rida, Ali;Gu, Yejun;Magagnosc, Daniel;Zaki, Tamer A.;El-Awady, Jaafar A.
  • 通讯作者:
    El-Awady, Jaafar A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaafar El-Awady其他文献

Jaafar El-Awady的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaafar El-Awady', 18)}}的其他基金

Travel Grant: 10th International Conference on Multiscale Materials Modeling; Baltimore, Maryland; October 19-22, 2020
旅费资助:第十届多尺度材料建模国际会议;
  • 批准号:
    1937162
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Bottom-up fundamental approach for characterizing plasticity and deformation in BCC and FCC high entropy alloys
自下而上表征 BCC 和 FCC 高熵合金塑性和变形的基本方法
  • 批准号:
    1807708
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Quantifying the Thermo-Mechanical Response and Strain-Rate Effects in Magnesium Microcrystals
量化镁微晶的热机械响应和应变率效应
  • 批准号:
    1609533
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Identifying the Micromechanisms Leading to Hydrogen-Induced Intergranular Fracture in Metals
职业:确定导致金属中氢致晶间断裂的微观机制
  • 批准号:
    1454072
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An assessment of low-temperature, ductile lithospheric deformation using existing broadband seismic data from around South Island, New Zealand
使用新西兰南岛周围现有的宽带地震数据评估低温、延性岩石圈变形
  • 批准号:
    2316757
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Developing a data-driven, real-time electron microscopy method toward interpreting plastic deformation and fracture mechanisms of structural materials in sub-microscopic level.
开发一种数据驱动的实时电子显微镜方法,以解释亚微观水平结构材料的塑性变形和断裂机制。
  • 批准号:
    23H00238
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
New developments in crustal deformation forecast research using GNSS data
GNSS数据地壳变形预报研究新进展
  • 批准号:
    23K17335
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
CAREER: Fundamentals of Modeling Deformation Twinning in Polycrystalline Materials Driven by Diffraction-Based Micromechanical Data
职业:基于衍射的微机械数据驱动的多晶材料变形孪生建模基础
  • 批准号:
    2143808
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental deformation of monazite and titanite: Implications for interpretation of petrochronologic data
合作研究:独居石和钛矿的实验变形:对岩石年代学数据解释的启示
  • 批准号:
    2217837
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Analysing GNSS network data for deformation monitoring in multi-scale, multi-temporal civil engineering applications
分析 GNSS 网络数据以进行多尺度、多时态土木工程应用中的变形监测
  • 批准号:
    2763649
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Studentship
Collaborative Research: Experimental deformation of monazite and titanite: Implications for interpretation of petrochronologic data
合作研究:独居石和钛矿的实验变形:对岩石年代学数据解释的启示
  • 批准号:
    2217836
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Regional crustal deformation in east Asia inferred from GNSS data
根据 GNSS 数据推断的东亚区域地壳形变
  • 批准号:
    19H01984
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of the parameterization of sea ice deformation processes based on the year-round comprehensive data in the Arctic Ocean
基于北冰洋全年综合数据的海冰变形过程参数化研究
  • 批准号:
    19K12304
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Strain-rate dependent brittle deformation of rocks during impact cratering: Linking mechanical data and microstructure
撞击过程中岩石的应变率相关脆性变形:力学数据和微观结构的联系
  • 批准号:
    398025349
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了