Development of a machine learning pipeline for assisting strain design of nonmodel yeasts
开发机器学习流程以协助非模型酵母菌株设计
基本信息
- 批准号:2225809
- 负责人:
- 金额:$ 94.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Some yeast strains produce relatively large amounts of oils and fats. These oils and fats have similar structures to those for many pharmaceuticals and chemicals. These strains are often also capable of high growth rates and can be grown using waste plant biomass. These yeasts can also be genetically engineered, so they could be a platform for low-cost biomanufacturing processes. Before that can be achieved, additional details of their metabolic mechanisms must be uncovered. The overall objective of this project is to develop a model that can predict the yield of product from biomanufacturing processes using genetically modified yeasts. This project also includes summer research programs for high school and undergraduate students. One point of emphasis will involve a partnership with Lincoln University, an HBCU. This partnership will help to develop a diverse workforce well-trained in key aspects of the emerging bioeconomy: artificial intelligence, bioinformatics, and synthetic biology.Synthetic biology tools can engineer microbes to produce many target products. Multiple Design-Build-Test-Learn (DBTL) cycles are required to resolve bottlenecks that resulted from both pathway engineering and stressed cultivation conditions. However, the effectiveness of DBTL often drops after initial cycles and strain development may fall into “involutions” without further technology breakthroughs. To overcome this hurdle, the Washington University/RPI team will work with Sandia National Lab and Pacific Northwest National Lab to develop an AI-enhanced biomanufacturing route. Firstly, they will perform knowledge mining of oleaginous yeast literature and the ABF data repository. The extracted information (including strain engineering, fermentation conditions, and production metrics) will be converted into a structured database. The database will be used to train machine learning (ML) models to predict productivity from engineered constructs under various bioreactor conditions. Then, the team will integrate ML and computational strain design models to guide yeast strain development for biofuels (e.g., butanol) and natural products (e.g., flavonoid) synthesis. Based on model predictions, the RPI team and the national labs will perform novel enzyme engineering, promoter tuning, and CRISPRi pathway modification to improve yeast fermentation titers. The experimental tests will validate and further improve model applicability. The objectives of this project are four fold: (1) Develop rules that extract and standardize biomanufacturing information from different sources; (2) Advance AI technology (such as meta-learning and ensemble learning) for the prediction of non-model yeast fermentation outcomes; (3) Integrate genome scale modeling, computational strain design, and ML to improve strain design under complex bioreactor conditions, to minimize DBTL cycles, and to reduce the cost for experimental trials; and (4) Engineer three non-model yeast species for bioproduction with sustainable feedstock. The successes in this project could greatly facilitate the translation of laboratory strains into industrial producers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一些酵母菌株产生相对大量的油和脂肪。这些油脂与许多药物和化学品的油脂具有相似的结构。这些菌株通常也能够具有高生长速率,并且可以使用废弃植物生物质来生长。这些酵母也可以进行基因工程改造,因此它们可以成为低成本生物制造过程的平台。在此之前,必须揭示其代谢机制的更多细节。该项目的总体目标是开发一种模型,可以预测使用转基因酵母的生物制造过程中的产品产量。该项目还包括高中和本科生的暑期研究计划。其中一个重点将涉及与林肯大学,一个HBCU的伙伴关系。这一伙伴关系将有助于培养一支在新兴生物经济的关键方面受过良好培训的多元化劳动力队伍:人工智能,生物信息学和合成生物学。合成生物学工具可以设计微生物以生产许多目标产品。需要多个设计-构建-测试-学习(DBTL)循环来解决由途径工程和胁迫培养条件引起的瓶颈。然而,DBTL的有效性往往在初始周期后下降,并且菌株开发可能会陷入“内卷”而没有进一步的技术突破。为了克服这一障碍,华盛顿大学/RPI团队将与桑迪亚国家实验室和太平洋西北国家实验室合作,开发一种人工智能增强的生物制造路线。首先,他们将对产油酵母文献和ABF数据库进行知识挖掘。提取的信息(包括菌株工程、发酵条件和生产指标)将被转换为结构化数据库。该数据库将用于训练机器学习(ML)模型,以预测各种生物反应器条件下工程构建体的生产率。然后,该团队将整合ML和计算菌株设计模型,以指导用于生物燃料的酵母菌株开发(例如,丁醇)和天然产物(例如,类黄酮)合成。基于模型预测,RPI团队和国家实验室将进行新型酶工程、启动子调整和CRISPRi途径修饰,以提高酵母发酵效价。实验测试将验证并进一步提高模型的适用性。该项目的目标有四个方面:(1)制定从不同来源提取和标准化生物制造信息的规则;(2)推进人工智能技术(如元学习和集成学习)用于预测非模型酵母发酵结果;(3)整合基因组规模建模、计算菌株设计和ML以改进复杂生物反应器条件下的菌株设计,以最小化DBTL循环,并降低实验性试验的成本;以及(4)工程化三种非模式酵母物种,用于可持续原料的生物生产。该项目的成功将极大地促进实验室菌株转化为工业生产者。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yinjie Tang其他文献
Possibilities and Caveats of Implicit Language Aptitude Measurements
内隐语言能力测量的可能性和注意事项
- DOI:
10.32038/ltrq.2022.31.09 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yinjie Tang;Shaoqian Luo - 通讯作者:
Shaoqian Luo
Washington University Open Washington University Open Engineering Biosensors for Short-chain Alcohols Engineering Biosensors for Short-chain Alcohols
华盛顿大学开放 华盛顿大学开放短链醇工程生物传感器 短链醇工程生物传感器
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yu Xia;Fuzhong Zhang;Tae Seok Moon;Yinjie Tang - 通讯作者:
Yinjie Tang
Yinjie Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yinjie Tang', 18)}}的其他基金
Transition: Metabolomics-driven understanding of rules that coordinate metabolic responses and adaptive evolution of synthetic biology chassis
转变:代谢组学驱动的对协调代谢反应和合成生物学底盘适应性进化的规则的理解
- 批准号:
2320104 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Standard Grant
URoL:EN: A non-parametric framework to understand emergent behaviors of microbial consortia
URoL:EN:理解微生物群落紧急行为的非参数框架
- 批准号:
2222403 - 财政年份:2022
- 资助金额:
$ 94.33万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Integrating microtome sectioning with isotopic tracing to study biotransformation in synthetic Escherichia coli biofilms
EAGER:合作研究:将切片机切片与同位素示踪相结合,研究合成大肠杆菌生物膜的生物转化
- 批准号:
1700881 - 财政年份:2017
- 资助金额:
$ 94.33万 - 项目类别:
Standard Grant
Collaborative Research: Productivity Prediction of Microbial Cell Factories using Machine Learning and Knowledge Engineering
合作研究:利用机器学习和知识工程预测微生物细胞工厂的生产力
- 批准号:
1616619 - 财政年份:2016
- 资助金额:
$ 94.33万 - 项目类别:
Standard Grant
Collaborative Research: Use of 13C-labeling and flux modeling to analyze metabolic reactions and gas-liquid mass transfer during syngas fermentations
合作研究:使用 13C 标记和通量模型来分析合成气发酵过程中的代谢反应和气液传质
- 批准号:
1438125 - 财政年份:2014
- 资助金额:
$ 94.33万 - 项目类别:
Standard Grant
ABI innovation: Integration of flux balance analyses with data mining and 13C-labeling experiments to decipher microbial metabolisms
ABI 创新:将通量平衡分析与数据挖掘和 13C 标记实验相结合,以破译微生物代谢
- 批准号:
1356669 - 财政年份:2014
- 资助金额:
$ 94.33万 - 项目类别:
Standard Grant
CAREER: Development of 13C-assisted Metabolic Flux Analysis Tools for Metabolic Engineering of Cyanobacteria
职业:开发用于蓝藻代谢工程的 13C 辅助代谢通量分析工具
- 批准号:
0954016 - 财政年份:2010
- 资助金额:
$ 94.33万 - 项目类别:
Continuing Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
$ 94.33万 - 项目类别:
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
- 批准号:
10089281 - 财政年份:2024
- 资助金额:
$ 94.33万 - 项目类别:
Investment Accelerator
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
- 批准号:
10091589 - 财政年份:2024
- 资助金额:
$ 94.33万 - 项目类别:
Collaborative R&D
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301173 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Continuing Grant
Development of a correlational algorithm between oral function examination and oral-related QoL using machine learning.
使用机器学习开发口腔功能检查和口腔相关生活质量之间的相关算法。
- 批准号:
23K09302 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
- 批准号:
23H02064 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of an RNA-based test for diagnosing and monitoring bone and soft tissue cancers
开发基于 RNA 的测试来诊断和监测骨癌和软组织癌
- 批准号:
480287 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Operating Grants
Development of Power System Stability Analysis Method Using Physics-Informed Machine Learning
利用物理信息机器学习开发电力系统稳定性分析方法
- 批准号:
23K13326 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists