ABI innovation: Integration of flux balance analyses with data mining and 13C-labeling experiments to decipher microbial metabolisms

ABI 创新:将通量平衡分析与数据挖掘和 13C 标记实验相结合,以破译微生物代谢

基本信息

  • 批准号:
    1356669
  • 负责人:
  • 金额:
    $ 48.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

Microorganisms play important roles in ecology, biogeochemical cycles, human diseases, bioremediation and bioenergy. Currently, high-throughput sequencing is being used to map the genomes of microbial species. However, the DNA sequence of a microbe does not provide a complete understanding of its functioning. To bridge the knowledge gap between genotype and phenotype, metabolic flux analysis is an important phenomic tool to investigate in vivo enzymatic activities. Analysis of metabolic fluxes can identify bottleneck pathways in the biosynthesis of desirable products, decipher the function of unknown genes, discover new enzymes, and reveal the mechanisms of diseases. In this project, a user-friendly metabolic flux analysis platform will be developed to provide a robust cyberinfrastructure for biologists, helping them analyze large amounts of phenomic data efficiently. In addition, this platform includes an open source database for storing and disseminating flux analysis data on diverse microbial metabolisms. This database can assist metabolic flux analyses of new microorganisms, enabling the systems biology community to benefit from the fast advancement in "Big Data" technology. Ultimately, this platform can be a springboard for future development of high throughput methodologies to analyze diverse biological systems. The broader impact of this project not only includes educational efforts for high school students (especially minority and under-represented groups) to promote their inquiry and interests in STEM fields, but also development of a wiki-styled website and discussion forum for flux analysis technologies and applications. Current systems biology studies (for example, transcriptomics) rely on model organisms for genome annotation and have limited power to reveal novel metabolic pathways. In addition, post-transcriptional and post-translational regulations hinder the possible phenotypic information that can be determined from genomic approaches. Thereby, it is of great value to build a new metabolic flux analysis platform to decipher microbial metabolisms and metabolic regulations. This project has three tasks to develop novel capabilities for metabolic flux analysis. The first task will be to build a comprehensive carbon-fate map for 13C-assisted pathway identification and to provide effective computational algorithms for 13C-metabolic flux analysis. Thereby, this flux analysis platform can precisely quantify the pathway activities using the labeling information from 13C-tracer experiments. The second task will be to build a database of published microbial fluxomic results, which can then be analyzed via data mining approaches to predict pathway linkages and novel microbial metabolisms in new species. The third task will be to create new approaches to integrate genome-scale flux balance analysis with both 13C-labeling and data mining results to precisely characterize microbial metabolisms. Once the new model platform is developed, it will be tested using case studies. Based on available experimental data on Shewanella metabolic flux analyses, the model applicability will be validated and improved. Ultimately, this new platform can be widely used by the systems biology society to provide new insights into diverse microbial species. The project web link is: http://tang.eece.wustl.edu/
微生物在生态学、地球化学循环、人类疾病、生物修复和生物能源等方面发挥着重要作用。目前,高通量测序被用于绘制微生物物种的基因组。然而,微生物的DNA序列并不能提供对其功能的完整理解。为了弥合基因型和表型之间的知识鸿沟,代谢通量分析是研究体内酶活性的重要表型学工具。代谢通量的分析可以识别生物合成所需产物的瓶颈途径,破译未知基因的功能,发现新的酶,并揭示疾病的机制。在这个项目中,将开发一个用户友好的代谢通量分析平台,为生物学家提供一个强大的网络基础设施,帮助他们有效地分析大量的表型数据。此外,该平台还包括一个开源数据库,用于存储和传播各种微生物代谢的通量分析数据。该数据库可以辅助新微生物的代谢通量分析,使系统生物学界能够从“大数据”技术的快速发展中受益。最终,这个平台可以成为未来开发高通量方法来分析不同生物系统的跳板。该项目的更广泛影响不仅包括为高中生(特别是少数民族和代表性不足的群体)开展教育工作,以促进他们对STEM领域的研究和兴趣,还包括开发一个维基风格的网站和讨论论坛,用于通量分析技术和应用。目前的系统生物学研究(例如转录组学)依赖于模式生物进行基因组注释,并且在揭示新的代谢途径方面能力有限。此外,转录后和翻译后调节阻碍了可以从基因组方法确定的可能的表型信息。因此,建立一个新的代谢通量分析平台,对揭示微生物的代谢机制和代谢调控具有重要的意义。该项目有三个任务来开发代谢通量分析的新功能。第一个任务将是建立一个全面的碳命运图13 C辅助途径识别,并提供有效的计算算法13 C代谢通量分析。因此,该通量分析平台可以使用来自13 C-示踪实验的标记信息精确地量化途径活动。第二项任务是建立一个已发表的微生物通量组学结果数据库,然后通过数据挖掘方法进行分析,以预测新物种中的途径联系和新微生物代谢。第三项任务是创建新的方法,将基因组规模的通量平衡分析与13 C标记和数据挖掘结果相结合,以精确表征微生物代谢。一旦新的模型平台开发完成,将使用案例研究对其进行测试。基于希瓦氏菌代谢通量分析的实验数据,将验证和改进模型的适用性。最终,这个新平台可以被系统生物学协会广泛使用,为不同的微生物物种提供新的见解。该项目的网站链接是:http://tang.eece.wustl.edu/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yinjie Tang其他文献

Possibilities and Caveats of Implicit Language Aptitude Measurements
内隐语言能力测量的可能性和注意事项
Washington University Open Washington University Open Engineering Biosensors for Short-chain Alcohols Engineering Biosensors for Short-chain Alcohols
华盛顿大学开放 华盛顿大学开放短链醇工程生物传感器 短链醇工程生物传感器
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Xia;Fuzhong Zhang;Tae Seok Moon;Yinjie Tang
  • 通讯作者:
    Yinjie Tang

Yinjie Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yinjie Tang', 18)}}的其他基金

Transition: Metabolomics-driven understanding of rules that coordinate metabolic responses and adaptive evolution of synthetic biology chassis
转变:代谢组学驱动的对协调代谢反应和合成生物学底盘适应性进化的规则的理解
  • 批准号:
    2320104
  • 财政年份:
    2023
  • 资助金额:
    $ 48.65万
  • 项目类别:
    Standard Grant
URoL:EN: A non-parametric framework to understand emergent behaviors of microbial consortia
URoL:EN:理解微生物群落紧急行为的非参数框架
  • 批准号:
    2222403
  • 财政年份:
    2022
  • 资助金额:
    $ 48.65万
  • 项目类别:
    Standard Grant
Development of a machine learning pipeline for assisting strain design of nonmodel yeasts
开发机器学习流程以协助非模型酵母菌株设计
  • 批准号:
    2225809
  • 财政年份:
    2022
  • 资助金额:
    $ 48.65万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Integrating microtome sectioning with isotopic tracing to study biotransformation in synthetic Escherichia coli biofilms
EAGER:合作研究:将切片机切片与同位素示踪相结合,研究合成大肠杆菌生物膜的生物转化
  • 批准号:
    1700881
  • 财政年份:
    2017
  • 资助金额:
    $ 48.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Productivity Prediction of Microbial Cell Factories using Machine Learning and Knowledge Engineering
合作研究:利用机器学习和知识工程预测微生物细胞工厂的生产力
  • 批准号:
    1616619
  • 财政年份:
    2016
  • 资助金额:
    $ 48.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Use of 13C-labeling and flux modeling to analyze metabolic reactions and gas-liquid mass transfer during syngas fermentations
合作研究:使用 13C 标记和通量模型来分析合成气发酵过程中的代谢反应和气液传质
  • 批准号:
    1438125
  • 财政年份:
    2014
  • 资助金额:
    $ 48.65万
  • 项目类别:
    Standard Grant
CAREER: Development of 13C-assisted Metabolic Flux Analysis Tools for Metabolic Engineering of Cyanobacteria
职业:开发用于蓝藻代谢工程的 13C 辅助代谢通量分析工具
  • 批准号:
    0954016
  • 财政年份:
    2010
  • 资助金额:
    $ 48.65万
  • 项目类别:
    Continuing Grant

相似国自然基金

最优证券设计及完善中国资本市场的路径选择
  • 批准号:
    70873012
  • 批准年份:
    2008
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Social-Medical Network: Using a Network Approach to Explore the Integration of Informal and Formal Care Networks of Older Adults
社会医疗网络:利用网络方法探索老年人非正式和正式护理网络的整合
  • 批准号:
    10724756
  • 财政年份:
    2023
  • 资助金额:
    $ 48.65万
  • 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
  • 批准号:
    10764456
  • 财政年份:
    2023
  • 资助金额:
    $ 48.65万
  • 项目类别:
Integration of Cognitive Processing Therapy and Relapse Prevention for Alcohol Use Disorder and Co-Occurring PTSD: A Randomized Clinical Trial
认知处理疗法与酒精使用障碍和并发 PTSD 复发预防的整合:一项随机临床试验
  • 批准号:
    10934633
  • 财政年份:
    2023
  • 资助金额:
    $ 48.65万
  • 项目类别:
CC* Integration-Small: Network cyberinfrastructure innovation with an intelligent real-time traffic analysis framework and application-aware networking
CC* Integration-Small:网络基础设施创新,具有智能实时流量分析框架和应用感知网络
  • 批准号:
    2322369
  • 财政年份:
    2023
  • 资助金额:
    $ 48.65万
  • 项目类别:
    Standard Grant
Integration of social innovation actors in innovation ecosystems
将社会创新参与者融入创新生态系统
  • 批准号:
    10077661
  • 财政年份:
    2023
  • 资助金额:
    $ 48.65万
  • 项目类别:
    EU-Funded
ORION: Oncology Research Integration using OHDSI-based NLP (NCI Cancer Informatics Scholar)
ORION:使用基于 OHDSI 的 NLP 进行肿瘤学研究整合(NCI 癌症信息学学者)
  • 批准号:
    10891217
  • 财政年份:
    2023
  • 资助金额:
    $ 48.65万
  • 项目类别:
Integration of Compliance Chambers into Diaphragm Displacement Pump to Double the Pumping Flow of Pediatric Paracorporeal Pulsatile Ventricular Assist Device
将顺应室集成到隔膜排量泵中,使儿科体外脉动心室辅助装置的泵流量加倍
  • 批准号:
    10761399
  • 财政年份:
    2023
  • 资助金额:
    $ 48.65万
  • 项目类别:
NexGen 7T MRI scanner for mesoscale brain imaging: Integration and Dissemination
用于中尺度脑成像的 NexGen 7T MRI 扫描仪:整合与传播
  • 批准号:
    10725586
  • 财政年份:
    2023
  • 资助金额:
    $ 48.65万
  • 项目类别:
Integration of Geriatric Care into Dialysis Clinics
将老年护理纳入透析诊所
  • 批准号:
    10655156
  • 财政年份:
    2023
  • 资助金额:
    $ 48.65万
  • 项目类别:
Integration and interoperability of complex data and tissues from the human brain
人脑复杂数据和组织的集成和互操作性
  • 批准号:
    10789107
  • 财政年份:
    2023
  • 资助金额:
    $ 48.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了