Collaborative Research: MFB: Integrating Deep Learning and High-throughput Experimentation to Rapidly Navigate Protein Fitness Landscapes for Non-native Enzyme Catalysis
合作研究:MFB:整合深度学习和高通量实验,快速探索非天然酶催化的蛋白质适应性景观
基本信息
- 批准号:2226451
- 负责人:
- 金额:$ 44.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-11-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding the relationship between protein structure and function remains a major challenge. This knowledge would benefit drug design, recycling, and chemical production. This project is designed to learn how to create proteins that will facilitate reactions seen in nature. Artificial intelligence will interpret the data generated by experiments. Two classes of enzymes will be modified to facilitate novel reactions. To help diversify the STEM workforce, workshops in machine learning will be offered to students interested in protein design. Summer research opportunities will be offered to high school and undergraduate students traditionally underrepresented in STEM fields.In this project, protein engineering is treated as a Bayesian optimization problem, with the objective to explore sequence space for improved specific activity. This approach models both the expected activity and the uncertainty of the prediction made. Training deep learning models is data intensive. A convolution neural net (CNN) using transformer architecture will use simulated sequence-function data to pretrain. The simulated data will be generated using Rosetta. Pretrained CNN will be refined with experimental data generated using combinatorial codon mutagenesis (CCM). Enzyme activity in single bacterial cells will be monitored using GFP expression, FACS-based screening, and next-generation DNA sequencing to determine the corresponding amino acid sequences. Biosensor screening can suffer from crosstalk when multiple cells are present. A picoliter-scale microdroplet screening technology developed in the Romero lab will be utilized to avoid this issue. A simulated annealing algorithm to randomly search over sequence positions and degenerate codons for libraries with high values for the expected batch BO objective will be developed. In addition, a probabilistic program using sampling-based inference to estimate the optimal combination of codons will be designed and implemented.This project is jointly supported by the Division of Chemical, Bioengineering, Environmental and Transport Systems (CBET), the Division of Chemistry (CHE), and the Division of Information and Intelligent Systems (IIS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
理解蛋白质结构和功能之间的关系仍然是一个重大挑战。这一知识将有助于药物设计、回收和化学品生产。这个项目的目的是学习如何创造出促进自然界中的反应的蛋白质。人工智能将解释实验产生的数据。将对两类酶进行修饰,以促进新的反应。为了帮助STEM劳动力多样化,将为对蛋白质设计感兴趣的学生提供机器学习研讨会。在这个项目中,蛋白质工程被视为一个贝叶斯优化问题,目的是探索序列空间,以改善特定的活动。这种方法既模拟了预期活动,也模拟了预测的不确定性。训练深度学习模型是数据密集型的。采用变压器结构的卷积神经网络(CNN)将使用模拟的序列函数数据进行预训练。模拟数据将使用Rosetta生成。预先训练的CNN将用使用组合密码子突变(CCM)产生的实验数据进行改进。将使用GFP表达、基于FACS的筛选和下一代DNA测序来监测单个细菌细胞中的酶活性,以确定相应的氨基酸序列。当存在多个细胞时,生物传感器筛选可能会受到串扰的影响。罗梅罗实验室开发的皮升规模的微滴筛选技术将被用来避免这个问题。将开发一种模拟退火算法来随机搜索序列位置和退化密码子,以寻找具有预期批量BO目标的高值文库。此外,还将设计和实施一个使用基于抽样的推理来估计密码子最佳组合的概率计划。该项目由化学、生物工程、环境和运输系统部门(CBET)、化学部门(CHE)和信息和智能系统部门(IIS)联合支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony Gitter其他文献
Studying and modelling dynamic biological processes using time-series gene expression data
利用时间序列基因表达数据研究和模拟动态生物过程
- DOI:
10.1038/nrg3244 - 发表时间:
2012-07-18 - 期刊:
- 影响因子:52.000
- 作者:
Ziv Bar-Joseph;Anthony Gitter;Itamar Simon - 通讯作者:
Itamar Simon
Anthony Gitter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony Gitter', 18)}}的其他基金
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Continuing Grant
CAREER: Inference in temporal signaling and transcriptional data
职业:时间信号和转录数据的推断
- 批准号:
1553206 - 财政年份:2016
- 资助金额:
$ 44.4万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 44.4万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 44.4万 - 项目类别:
Continuing Grant