RII Track-4: NSF: Soft Architected Metamaterials for Extreme Energy Dissipation
RII Track-4:NSF:用于极端能量耗散的软架构超材料
基本信息
- 批准号:2226563
- 负责人:
- 金额:$ 20.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Designing innovative lightweight materials and structures with significant energy dissipation against dynamic mechanical loads is critical for protection and effective performance of assets and personnel in operational conditions. Soft architected metamaterials (SAMs) consisting of spatially periodic microstructures show new and/or customized energy dissipation behaviors due to the interplay between material properties and geometry. Despite the promise, there remains a lack of fundamental understanding of deformation mechanisms and energy dissipation pathways in SAMs, as well as the structure-property relationships that could be leveraged to devise novel structural arrangements for enhanced survivability. With support from the primary research collaborator Prof. Weinong Chen at Purdue University (PU), this project aims to investigate the deformation and failure mechanisms of SAMs subjected to dynamic mechanical loading using a combined computational and experimental approach. The fundamental insights gained through this research project will enable the development of advanced architected materials and fill the knowledge gap to engineer architected metamaterials for enhanced energy dissipation. The collaboration between the PI and the collaborator will not only lay a foundation for continued research between the two institutions but will also strengthen the research competitiveness of the PI’s research group and benefit students, University of Louisville, and the State of Kentucky through the PI’s synergistic workforce training, curriculum development, and outreach activities. This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows project provides a fellowship to an Assistant Professor and training for a graduate student at the University of Louisville at Kentucky. The overarching goal of the research research is to investigate active and reconfigurable control of low amplitude elastic wave propagation and high-velocity impact energy dissipation mechanisms of SAMs through a new collaboration with Prof. Weinong Chen at PU. To achieve this goal, the PI will bring his expertise in metamaterial design and modeling. The primary collaborator will provide complementary expertise in novel dynamic material characterization techniques at high loading rates. The unique modified Kolsky compression bar and high-speed synchrotron X-ray phase contrast imaging system at PU is essential to capture the real-time fracture processes in SAMs, including damage initiation and propagation during impact events and the interaction between multiple failure modes. These experiments will be critically integrated with modeling work to advance the research by calibrating model parameters and validating models. The specific research objectives and methods are to (1) construct an advanced modeling environment using a suite of building blocks with behaviors modeled through a physics-based constitutive material model, (2) develop high-fidelity multiphysics and multiscale computational models for strain engineered elastic wave propagation and impact energy dissipation, respectively, and (3) experimentally characterize elastic wave propagation using a 3D scanning laser Doppler vibrometer and real-time damage of SAM prototypes using the high-speed synchrotron X-ray imaging system. Successful completion of the proposed research will significantly advance our fundamental understanding of the dynamic mechanical behavior of SAMs and will ultimately facilitate the design of novel architected metamaterials with improved energy dissipation capabilities that can serve in harsh operating environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设计创新的轻质材料和结构,在动态机械载荷下具有显著的能量耗散,对于在操作条件下保护资产和人员的有效性能至关重要。由空间周期性微结构组成的软结构超材料(sam)由于材料特性和几何结构之间的相互作用而表现出新的和/或定制的能量耗散行为。尽管前景很好,但对地对空导弹的变形机制和能量耗散途径,以及可以用来设计提高生存能力的新型结构安排的结构-性能关系,仍然缺乏基本的理解。在主要研究合作者普渡大学(PU)的陈伟农教授的支持下,该项目旨在采用计算和实验相结合的方法研究sam在动态机械载荷下的变形和破坏机制。通过该研究项目获得的基本见解将使先进建筑材料的发展成为可能,并填补了设计建筑超材料以增强能量耗散的知识空白。PI与合作者之间的合作不仅将为两所机构之间的持续研究奠定基础,而且将加强PI研究小组的研究竞争力,并通过PI的协同劳动力培训,课程开发和外展活动使学生,路易斯维尔大学和肯塔基州受益。该研究基础设施改善轨道4 EPSCoR研究人员项目为肯塔基州路易斯维尔大学的助理教授和研究生提供奖学金。研究的总体目标是通过与PU的陈伟农教授的新合作,研究地对空导弹的低振幅弹性波传播和高速冲击能量耗散机制的主动和可重构控制。为了实现这一目标,PI将带来他在超材料设计和建模方面的专业知识。主要合作伙伴将在高加载率下提供新的动态材料表征技术方面的补充专业知识。PU独特的改良Kolsky压缩杆和高速同步加速器x射线相衬成像系统对于捕获sam的实时断裂过程至关重要,包括冲击事件中损伤的产生和扩展以及多种失效模式之间的相互作用。这些实验将与建模工作紧密结合,通过校准模型参数和验证模型来推进研究。具体的研究目标和方法是:(1)使用一套构建模块构建先进的建模环境,通过基于物理的本构材料模型建模行为;(2)分别为应变工程弹性波传播和冲击能量耗散建立高保真的多物理场和多尺度计算模型。(3)利用三维扫描激光多普勒测振仪实验表征弹性波的传播特性,并利用高速同步x射线成像系统对SAM原型机进行实时损伤表征。这项研究的成功完成将极大地促进我们对地空导弹动态力学行为的基本理解,并最终促进新型建筑超材料的设计,这些材料具有改进的能量耗散能力,可以在恶劣的操作环境中使用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elastically anisotropic architected metamaterials with enhanced energy absorption
- DOI:10.1016/j.tws.2023.111115
- 发表时间:2023-11
- 期刊:
- 影响因子:6.4
- 作者:Huan Jiang;B. Bednarcyk;Louise Le Barbenchon;Yanyu Chen
- 通讯作者:Huan Jiang;B. Bednarcyk;Louise Le Barbenchon;Yanyu Chen
Greek Key Inspired Fractal Metamaterials with Superior Stretchability for Tunable Wave Propagation
- DOI:10.1002/admt.202300981
- 发表时间:2023-11-01
- 期刊:
- 影响因子:6.8
- 作者:Zhang,Zhennan;Jiang,Huan;Chen,Yanyu
- 通讯作者:Chen,Yanyu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanyu Chen其他文献
Group- and Individual-Focused Transformational Leadership: A Scenario Study
以团体和个人为中心的变革型领导力:情景研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.2
- 作者:
Yanyu Chen;Yi-Chieh Lin;Miao-Sui Hsu;Yi-Hsin Lin - 通讯作者:
Yi-Hsin Lin
Effects of Tweens on the Structure, interfacial Characteristics, and emulsifying and foaming properties of Ovalbumin
转铁蛋白对卵清蛋白结构、界面特性以及乳化和起泡性能的影响
- DOI:
10.1016/j.foodres.2025.115824 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:8.000
- 作者:
Qixin Zhang;Yanyu Chen;Wenyan Liu;Yuanping Ye;Danyun Cheng;Huina Zheng;Leiyan Wu - 通讯作者:
Leiyan Wu
Tracking the optical constants of self-patterned VOsub2/sub-based on smart windows during metal-insulator transition
跟踪基于智能窗户的自图案化VO₂在金属-绝缘体转变过程中的光学常数
- DOI:
10.1016/j.solmat.2024.112892 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:6.300
- 作者:
Chenchen Geng;Min Zhang;Hang Wei;Jinxin Gu;Tao Zhao;Huan Guan;Shuhui Liang;Olga Boytsova;Shuliang Dou;Yanyu Chen;Yao Li;Zhaoshuo Tian - 通讯作者:
Zhaoshuo Tian
Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications
用于可穿戴电子产品和人工智能应用的柔性压电材料和应变传感器
- DOI:
10.1039/d4sc05166a - 发表时间:
2024-09-18 - 期刊:
- 影响因子:7.400
- 作者:
Yanyu Chen;Xiaohong Zhang;Chao Lu - 通讯作者:
Chao Lu
Colorimetric detection of glucose in food using gold nanoparticles as nanoenzymes combined with a portable smartphone-assisted microfluidic paper-based analysis device
- DOI:
10.1016/j.saa.2024.125523 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:
- 作者:
Yanyu Chen;Huanan Guan - 通讯作者:
Huanan Guan
Yanyu Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanyu Chen', 18)}}的其他基金
Collaborative Research: An Integrated Multiscale Reduced-Order Modeling and Experimental Framework for Lithium-ion Batteries under Mechanical Abuse Conditions
协作研究:机械滥用条件下锂离子电池的集成多尺度降阶建模和实验框架
- 批准号:
2114823 - 财政年份:2021
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant