RII Track-4: NSF: Soft Architected Metamaterials for Extreme Energy Dissipation

RII Track-4:NSF:用于极端能量耗散的软架构超材料

基本信息

项目摘要

Designing innovative lightweight materials and structures with significant energy dissipation against dynamic mechanical loads is critical for protection and effective performance of assets and personnel in operational conditions. Soft architected metamaterials (SAMs) consisting of spatially periodic microstructures show new and/or customized energy dissipation behaviors due to the interplay between material properties and geometry. Despite the promise, there remains a lack of fundamental understanding of deformation mechanisms and energy dissipation pathways in SAMs, as well as the structure-property relationships that could be leveraged to devise novel structural arrangements for enhanced survivability. With support from the primary research collaborator Prof. Weinong Chen at Purdue University (PU), this project aims to investigate the deformation and failure mechanisms of SAMs subjected to dynamic mechanical loading using a combined computational and experimental approach. The fundamental insights gained through this research project will enable the development of advanced architected materials and fill the knowledge gap to engineer architected metamaterials for enhanced energy dissipation. The collaboration between the PI and the collaborator will not only lay a foundation for continued research between the two institutions but will also strengthen the research competitiveness of the PI’s research group and benefit students, University of Louisville, and the State of Kentucky through the PI’s synergistic workforce training, curriculum development, and outreach activities. This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows project provides a fellowship to an Assistant Professor and training for a graduate student at the University of Louisville at Kentucky. The overarching goal of the research research is to investigate active and reconfigurable control of low amplitude elastic wave propagation and high-velocity impact energy dissipation mechanisms of SAMs through a new collaboration with Prof. Weinong Chen at PU. To achieve this goal, the PI will bring his expertise in metamaterial design and modeling. The primary collaborator will provide complementary expertise in novel dynamic material characterization techniques at high loading rates. The unique modified Kolsky compression bar and high-speed synchrotron X-ray phase contrast imaging system at PU is essential to capture the real-time fracture processes in SAMs, including damage initiation and propagation during impact events and the interaction between multiple failure modes. These experiments will be critically integrated with modeling work to advance the research by calibrating model parameters and validating models. The specific research objectives and methods are to (1) construct an advanced modeling environment using a suite of building blocks with behaviors modeled through a physics-based constitutive material model, (2) develop high-fidelity multiphysics and multiscale computational models for strain engineered elastic wave propagation and impact energy dissipation, respectively, and (3) experimentally characterize elastic wave propagation using a 3D scanning laser Doppler vibrometer and real-time damage of SAM prototypes using the high-speed synchrotron X-ray imaging system. Successful completion of the proposed research will significantly advance our fundamental understanding of the dynamic mechanical behavior of SAMs and will ultimately facilitate the design of novel architected metamaterials with improved energy dissipation capabilities that can serve in harsh operating environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
针对动态机械负荷进行大量能量耗散的创新轻质材料和结构对于在运营条件下的资产和人员的有效绩效至关重要。由空间周期性微观结构组成的软构建的超材料(SAM)由于材料特性与几何形状之间的相互作用而显示出新的和/或定制的能量耗散行为。尽管有希望,但仍然缺乏对SAM中变形机制和能量耗散途径的基本理解,以及可以利用的结构范围关系来设计新的结构排列以增强生存。在普渡大学(PU)的主要研究合作者Weinong Chen教授的支持下,该项目旨在研究使用合并的计算和实验方法进行动态机械加载的SAM的变形和故障机制。通过该研究项目获得的基本见解将使先进的架构材料的开发,并填补工程师架构的变质材料以增强能量消散。 PI与合作者之间的合作不仅将为这两个机构之间的持续研究奠定基础,而且还将通过PI的协同劳动力培训,课程开发以及外展活动来增强PI研究小组和受益学生,路易斯维尔大学和肯塔基州的研究竞争力。这项研究基础设施改进Track-4 Epscor Research Fellows项目为肯塔基州路易斯维尔大学的一名研究生助理教授和培训提供了奖学金。研究研究的总体目标是通过与PU的Weinong Chen教授进行新的合作,研究对低放大器弹性波传播和高速影响能量耗散机制的积极和重新配置的控制。为了实现这一目标,PI将带来他在超材料设计和建模方面的专业知识。主要合作者将以高负载速率提供新型动态材料表征技术的完整专业知识。 PU的独特修改的Kolsky压缩栏和高速同步X射线对比度成像系统对于捕获SAM中的实时断裂过程至关重要,包括损坏倡议和撞击事件期间的损坏倡议和传播以及多个故障模式之间的相互作用。这些实验将与建模工作进行严格集成,以通过校准模型参数和验证模型来推进研究。 The specific research objectives and methods are to (1) construct an advanced modeling environment using a suite of building blocks with behaviors modeled through a physics-based constitutive material model, (2) develop high-fidelity multiphysics and multiscale computational models for strain engineered elastic wave propagation and impact energy dissipation, respectively, and (3) experimentally characterize elastic wave propagation using a 3D scanning laser Doppler vibration and使用高速同步加速器X射线成像系统对SAM原型的实时损害。 Successful completion of the proposed research will significantly advance our fundamental Understanding of the dynamic mechanical behavior of SAMs and will ultimately support the design of novel architected metamaterials with improved energy dissipation capabilities that can serve in harmsh operating environments.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elastically anisotropic architected metamaterials with enhanced energy absorption
  • DOI:
    10.1016/j.tws.2023.111115
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Huan Jiang;B. Bednarcyk;Louise Le Barbenchon;Yanyu Chen
  • 通讯作者:
    Huan Jiang;B. Bednarcyk;Louise Le Barbenchon;Yanyu Chen
Greek Key Inspired Fractal Metamaterials with Superior Stretchability for Tunable Wave Propagation
  • DOI:
    10.1002/admt.202300981
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Zhang,Zhennan;Jiang,Huan;Chen,Yanyu
  • 通讯作者:
    Chen,Yanyu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanyu Chen其他文献

Group- and Individual-Focused Transformational Leadership: A Scenario Study
以团体和个人为中心的变革型领导力:情景研究
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Yanyu Chen;Yi-Chieh Lin;Miao-Sui Hsu;Yi-Hsin Lin
  • 通讯作者:
    Yi-Hsin Lin
The Longitudinal Relationship Between Emotional Exhaustion and Self-compassion in Adolescent Students
青少年学生情绪疲惫与自我慈悲的纵向关系
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yanyu Chen;Baoshan Zhang;Yibo Hu
  • 通讯作者:
    Yibo Hu
Colorimetric detection of glucose in food using gold nanoparticles as nanoenzymes combined with a portable smartphone-assisted microfluidic paper-based analysis device
  • DOI:
    10.1016/j.saa.2024.125523
  • 发表时间:
    2025-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Yanyu Chen;Huanan Guan
  • 通讯作者:
    Huanan Guan
A prediction model based on adaptive selective scenario clustering and error correction
基于自适应选择性场景聚类和纠错的预测模型

Yanyu Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanyu Chen', 18)}}的其他基金

Collaborative Research: An Integrated Multiscale Reduced-Order Modeling and Experimental Framework for Lithium-ion Batteries under Mechanical Abuse Conditions
协作研究:机械滥用条件下锂离子电池的集成多尺度降阶建模和实验框架
  • 批准号:
    2114823
  • 财政年份:
    2021
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Standard Grant

相似国自然基金

石羊河上游径流水源追踪量化的模拟研究
  • 批准号:
    42301153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向复杂场景的说话人追踪关键技术研究
  • 批准号:
    62306029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用户兴趣迁移现象下基于图神经网络的舆情追踪技术研究
  • 批准号:
    62302199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单波段机载LiDAR测深的瞬时海面确定及光线追踪
  • 批准号:
    42304051
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
  • 批准号:
    52307021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了