High Energy Ultrashort-Pulse Microresonator Sources

高能超短脉冲微谐振源

基本信息

  • 批准号:
    2226639
  • 负责人:
  • 金额:
    $ 46.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Laser sources that can generate ultrashort pulses in time are highly desirable for applications including precision machining, ocular surgery, wavelength conversion, deep-tissue imaging, and all-optical clocks. The associated broad bandwidth from these sources is also ideal for spectroscopy, telecommunications, and distance ranging applications. Current short-pulse laser technology is very powerful but is restricted in size, cost, wavelength, and pulse performance by the requirement of a carefully arranged laser gain medium. More recent microresonator devices, on the other hand, operate without this gain limitation, but suffer from very low pulse energies, which limits their wider applicability. The objective of this research is to improve the energy performance of microresonator sources by up to a thousand times to develop highly adaptable sources of ultrashort pulses of light. In addition to significantly improving the performance of current microresonator applications in telecommunications and spectroscopy, this research can enable cheap, simple, small, light, and wavelength-versatile microresonator sources that can supplant standard pulsed lasers for traditional ultrashort-pulse applications including bio-imaging, frequency conversion, and all-optical clocks. Beyond technological impact, this project will train two PhD students in an area of large technological importance at the interface of nano-technology, ultrafast nonlinear optics and advanced optical technologies, and the PIs will integrate this important platform into the regular curriculum as well as into the extra-curricular optics summer-school program at the University of Rochester. Technical descriptionChip-based frequency-comb sources have proven to be a valuable resource for applications including spectroscopy, telecommunications, ranging, and signal processing. However, current microresonator sources have low single-pulse efficiencies and very low energies, at the femtojoule level. Applications currently require external amplification, limiting the source bandwidth and negating the benefits of an on-chip source. The objective of this research is to develop versatile on-chip devices for generating frequency-combs and ultrashort pulses with high efficiencies and up to a thousand times higher energies than the state-of-the-art. The energy of microresonator solitons is limited by the amount of optical nonlinearity that can be compensated by dispersion before the soliton destabilizes. We will experimentally demonstrate how this limit can be engineered through loss-engineering in strongly over-coupled cavities. We will develop normal dispersion cavities with integrated spectral filters to generate a type of novel chirped-pulse soliton that was recently shown by the PI to support very high energies in related fiber cavities. Successful implementation of these techniques, in addition to improving the performance of current microresonator applications significantly, will enable cheap, simple, small, light, and wavelength-versatile microresonator sources that can supplant mode-locked lasers for traditional ultrashort-pulse applications including bio-imaging, frequency conversion, and frequency-comb self-referencing. Beyond technological impact, this project will train two PhD students in an area of large technological importance at the interface of nano-technology, ultrafast nonlinear optics and advanced optical technologies, and the PIs will integrate this important platform into the regular curriculum as well as into the extra-curricular optics summer-school program at the University of Rochester.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能够及时产生超短脉冲的激光源对于包括精密加工、眼科手术、波长转换、深层组织成像和全光学时钟在内的应用是非常理想的。 来自这些光源的相关宽带宽也是光谱学、电信和测距应用的理想选择。 目前的短脉冲激光技术非常强大,但在尺寸、成本、波长和脉冲性能方面受到精心布置的激光增益介质的要求的限制。 另一方面,最近的微谐振器装置在没有这种增益限制的情况下操作,但是遭受非常低的脉冲能量,这限制了它们的更广泛的适用性。 这项研究的目的是将微谐振器源的能量性能提高1000倍,以开发具有高度适应性的超短脉冲光源。 除了显着提高当前微谐振器在电信和光谱学应用的性能外,这项研究还可以实现廉价,简单,小型,轻便和波长通用的微谐振器源,可以取代传统超短脉冲应用的标准脉冲激光器,包括生物成像,频率转换和全光时钟。 除了技术影响,该项目将在纳米技术,超快非线性光学和先进光学技术的界面上培养两名博士生,并将这个重要的平台整合到常规课程以及罗切斯特大学的课外光学暑期课程中。基于芯片的频率梳源已被证明是光谱学、电信、测距和信号处理等应用的宝贵资源。 然而,目前的微谐振器源具有低的单脉冲效率和非常低的能量,在毫微微焦耳的水平。 目前的应用需要外部放大,限制了源带宽,抵消了片内源的优势。 本研究的目的是开发多功能的片上器件,用于产生高效率的频率梳和超短脉冲,其能量比现有技术高出1000倍。 微谐振器孤子的能量受限于在孤子失稳之前可以通过色散补偿的光学非线性的量。我们将通过实验演示如何在强过耦合腔中通过损耗工程来设计这种限制。我们将开发集成光谱滤波器的正常色散腔,以产生一种新型的啁啾脉冲孤子,该孤子最近被PI证明可以在相关的光纤腔中支持非常高的能量。 这些技术的成功实施,除了提高当前微谐振器应用的性能显着,将使廉价,简单,小,轻,和波长通用的微谐振器源,可以取代锁模激光器的传统超短脉冲应用,包括生物成像,频率转换,和频率梳自参考。 除了技术影响外,该项目还将在纳米技术、超快非线性光学和先进光学技术的界面上培养两名具有重大技术意义的博士生,PI将把这个重要的平台融入常规课程和课外光学暑期活动-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Renninger其他文献

William Renninger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Renninger', 18)}}的其他基金

CAREER: Harnessing long-lived acoustic waves for microwave and quantum photonic devices
职业:利用长寿命声波用于微波和量子光子器件
  • 批准号:
    1943658
  • 财政年份:
    2020
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Continuing Grant

相似海外基金

Ultrashort pulse laser for ultra-hard machine tools processing
用于超硬机床加工的超短脉冲激光器
  • 批准号:
    LP220100153
  • 财政年份:
    2023
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Linkage Projects
Rotational spectroscopy of molecular ions produced by an intense ultrashort laser pulse
强超短激光脉冲产生的分子离子的旋转光谱
  • 批准号:
    23K13705
  • 财政年份:
    2023
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CEP stabilized high power ultrashort pulse laser system
CEP稳定高功率超短脉冲激光系统
  • 批准号:
    506452342
  • 财政年份:
    2022
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Major Research Instrumentation
Ultrashort pulse laser-matter interaction: intense foundations to practical applications
超短脉冲激光与物质相互作用:实际应用的坚实基础
  • 批准号:
    RGPIN-2017-06757
  • 财政年份:
    2021
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Discovery Grants Program - Individual
Development of mid-infrared high-power ultrashort pulse lasers and its application to soft-matter micro-processing
中红外高功率超短脉冲激光器的研制及其在软物质微加工中的应用
  • 批准号:
    21H01845
  • 财政年份:
    2021
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ultrashort pulse laser / diamond processing capability enhancement and process link optimization on sapphire capillary
蓝宝石毛细管超短脉冲激光/金刚石加工能力增强及工艺环节优化
  • 批准号:
    21H01231
  • 财政年份:
    2021
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
High-power ultrashort pulse laser system for simultaneous generation of ultrashort THz-pump and VUV-probe pulses
高功率超短脉冲激光系统,用于同时生成超短太赫兹泵浦和 VUV 探测脉冲
  • 批准号:
    445487514
  • 财政年份:
    2020
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Major Research Instrumentation
Ultrashort Pulse Laser Manufacturing for Sustainable Transport (UltraMach)
用于可持续交通的超短脉冲激光制造 (UltraMach)
  • 批准号:
    81955
  • 财政年份:
    2020
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Small Business Research Initiative
Ultrashort pulse laser-matter interaction: intense foundations to practical applications
超短脉冲激光与物质相互作用:实际应用的坚实基础
  • 批准号:
    RGPIN-2017-06757
  • 财政年份:
    2020
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrashort pulse laser-matter interaction: intense foundations to practical applications
超短脉冲激光与物质相互作用:实际应用的坚实基础
  • 批准号:
    RGPIN-2017-06757
  • 财政年份:
    2019
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了