CAREER: Harnessing long-lived acoustic waves for microwave and quantum photonic devices

职业:利用长寿命声波用于微波和量子光子器件

基本信息

  • 批准号:
    1943658
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Acoustic waves are a powerful resource for radio frequency and photonic technologies. Cellular phones, for example, require a number of precisely designed filters based off of acoustic waves. In addition to traditional applications such as filters, recently emerging quantum technologies are also seeing a steady increase in tasks that benefit from acoustic waves. However, in general, photonic devices based off of acoustic waves are limited in performance by the qualities of the acoustic waves that can be accessed. The objective of this research is to significantly improve the performance of such devices by engineering optical access to a much wider range of acoustic waves, with properties that are particularly beneficial for applications. By the specific design of novel waveguides and geometries for supporting the optical and acoustic waves, new physics and application performance regimes become available. The proposed research is expected to improve the coherence, resolution, and sensitivity of optically mediated acoustic wave technologies including filters, lasers, and quantum information devices. Beyond these technical advances, this program focuses on several advances for education, diversity, and society. In addition to graduate student research support and mentorship, this program will enable advanced material for a research techniques course. Finally, it will broaden access to advanced laser sources for smaller research groups and expand undergraduate research opportunities for students from first-generation college, low-income, and underrepresented minority backgrounds, in collaboration with the University of Rochester’s Kearns Center for Leadership and Diversity. Technical DescriptionThe objective of the proposed research is to optically control acoustic waves with frequencies and dissipation levels spanning several orders of magnitude, demonstrating new physical phenomena and enabling important performance advances for microwave and quantum photonic devices. Current optomechanical devices are limited in coherence, resolution, transduction, and sensitivity by the restricted lifetime, frequency, and character of the participating acoustic waves. This research focuses on engineering optical access to frequency and lifetime-agile acoustic waves for advanced optomechanical devices. State-of-the-art optomechanical spectroscopy techniques will be developed to optically probe and control guided and bulk acoustic waves with frequencies spanning several orders of magnitude, with femtowatt sensitivity. This program expands on optomechanical interactions known as Brillouin interactions, which enable important capabilities for beam cleaning, narrowband and high-power lasers, microwave photonic filters, optical delay lines, sensors, and imaging. The new types of interactions developed through this program are anticipated to enhance the performance of these devices as well as enable new research pathways, such as for quantum information science. Beyond direct research impact, this proposal focuses on activities that will broaden access to advanced resources and opportunities in the optical sciences. In addition to mentoring graduate students and developing a research skills course, this program will broaden access to advanced femtosecond laser sources for smaller research groups and expand undergraduate research opportunities for students from first-generation college, low-income, and underrepresented minority backgrounds, in collaboration with the University of Rochester’s Kearns Center for Leadership and Diversity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
声波是射频和光子技术的强大资源。 例如,蜂窝电话需要许多基于声波的精确设计的滤波器。 除了滤波器等传统应用外,最近新兴的量子技术也在稳步增加受益于声波的任务。 然而,通常,基于声波的光子器件在性能上受到可以访问的声波的质量的限制。 这项研究的目的是通过工程光学访问更广泛的声波,具有特别有利于应用的特性,以显着提高这些设备的性能。 通过用于支持光波和声波的新型波导和几何形状的特定设计,新的物理和应用性能机制变得可用。 这项研究有望提高光学介导声波技术的相干性、分辨率和灵敏度,包括滤波器、激光器和量子信息设备。 除了这些技术进步之外,该计划还侧重于教育,多样性和社会的一些进步。 除了研究生的研究支持和指导,该计划将使先进的材料的研究技术课程。 最后,它将扩大获得先进的激光光源为较小的研究小组,并扩大本科生的研究机会,从第一代大学,低收入和代表性不足的少数民族背景的学生,与罗切斯特的卡恩斯领导力和多样性中心的大学合作。 技术描述拟议研究的目标是光学控制声波的频率和耗散水平跨越几个数量级,展示新的物理现象,并实现微波和量子光子器件的重要性能进步。 目前的光学机械设备在相干性、分辨率、转换和灵敏度方面受到参与声波的有限寿命、频率和特性的限制。 这项研究的重点是工程光学访问的频率和寿命敏捷的声波先进的光学机械设备。 将开发最先进的光机械光谱技术,以光学探测和控制频率跨越几个数量级的导波和体声波,具有飞秒级的灵敏度。该计划扩展了称为布里渊相互作用的光机械相互作用,该相互作用使光束清洁,窄带和高功率激光器,微波光子滤波器,光学延迟线,传感器和成像具有重要功能。 通过该计划开发的新型相互作用预计将提高这些设备的性能,并实现新的研究途径,例如量子信息科学。 除了直接的研究影响外,该提案还侧重于扩大光学科学先进资源和机会的活动。 除了指导研究生和开发研究技能课程外,该计划还将为较小的研究小组扩大先进的飞秒激光源,并为第一代大学生,低收入和代表性不足的少数民族背景的学生扩大本科研究机会,与罗切斯特大学的卡恩斯领导和多样性中心合作。该奖项反映了NSF的法定使命,并已通过使用基金会的知识价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultra-low Brillouin scattering in anti-resonant hollow-core fibers
  • DOI:
    10.1063/5.0017796
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    A. Iyer;Wendao Xu;J. Antonio-Lopez;R. A. Correa;W. Renninger
  • 通讯作者:
    A. Iyer;Wendao Xu;J. Antonio-Lopez;R. A. Correa;W. Renninger
Strong Optomechanical Interactions with Long-lived Fundamental Acoustic Waves
  • DOI:
    10.1364/optica.476764
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Wendao Xu;A. Iyer;Lei Jin;S. Set;W. Renninger
  • 通讯作者:
    Wendao Xu;A. Iyer;Lei Jin;S. Set;W. Renninger
Ultranarrow-Linewidth Stimulated Intermodal Forward Brillouin Scattering
超窄线宽受激联运前向布里渊散射
  • DOI:
    10.1364/cleo_fs.2023.fth3b.3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu, Wendao;Zerbib, Maxime;Iyer, Arjun;Beugnot, Jean-Charles;Renninger, William H.
  • 通讯作者:
    Renninger, William H.
Stimulated Brillouin-like Optomechanics with Surface Acoustic Wave Cavities
具有表面声波腔的受激布里渊光力学
  • DOI:
    10.1364/cleo_fs.2023.fth1b.4
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iyer, Arjun;Kandel, Yadav;Xu, Wendao;Nichol, John;Renninger, William H.
  • 通讯作者:
    Renninger, William H.
Stimulated Forward Brillouin Scattering from a Fundamental Acoustic Mode in a Fiber Taper
光纤锥体中基本声模的受激前向布里渊散射
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu, Wendao;Iyer, Arjun;Jin, Lei;Set, Sze Y.;Renninger, William H.
  • 通讯作者:
    Renninger, William H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Renninger其他文献

William Renninger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Renninger', 18)}}的其他基金

High Energy Ultrashort-Pulse Microresonator Sources
高能超短脉冲微谐振源
  • 批准号:
    2226639
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
  • 批准号:
    MR/Y034457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
CAREER: Quantum silicon phononics: Harnessing long-lived phonons for memories and interconnects
职业:量子硅声学:利用长寿命声子进行存储器和互连
  • 批准号:
    2238058
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Harnessing the thymus for long-term tumor control with hematopoietic stem cell-derived naive CAR T cells
利用造血干细胞衍生的初始 CAR T 细胞利用胸腺来长期控制肿瘤
  • 批准号:
    10365031
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Harnessing the thymus for long-term tumor control with hematopoietic stem cell-derived naive CAR T cells
利用造血干细胞衍生的初始 CAR T 细胞利用胸腺来长期控制肿瘤
  • 批准号:
    10580801
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Harnessing potent next-generation diarylquinolines for long-acting injectable formulations to prevent and treat tuberculosis
利用强效的下一代二芳基喹啉制备长效注射制剂来预防和治疗结核病
  • 批准号:
    10437843
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Harnessing acid-sensing ion channel toxins for therapeutic purposes
利用酸敏感离子通道毒素进行治疗
  • 批准号:
    10322747
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Harnessing potent next-generation diarylquinolines for long-acting injectable formulations to prevent and treat tuberculosis
利用强效的下一代二芳基喹啉制备长效注射制剂来预防和治疗结核病
  • 批准号:
    10631987
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
CAREER: Harnessing the plant mobileome to predict, design, and deliver long-distance RNAs in plants
职业:利用植物移动组来预测、设计和传递植物中的长距离 RNA
  • 批准号:
    1942437
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Harnessing a novel multi-institutional cross-sectoral partnership for providing enhanced COVID and non-COVID care in long term care homes
利用新型多机构跨部门合作伙伴关系,在长期护理院提供增强的新冠肺炎和非新冠肺炎护理
  • 批准号:
    442400
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Operating Grants
Harnessing the RNA-Cleaving Properties of CRISPR-Cas13a for Applications to HIV Detection and Latency
利用 CRISPR-Cas13a 的 RNA 切割特性应用于 HIV 检测和潜伏期
  • 批准号:
    10004494
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了