Collaborative Research: Novel silicon-based optoelectronic materials

合作研究:新型硅基光电材料

基本信息

  • 批准号:
    2226700
  • 负责人:
  • 金额:
    $ 15.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-11-01 至 2025-10-31
  • 项目状态:
    未结题

项目摘要

Nontechnical description: Silicon is an essential semiconductor for the majority of modern electronic and solar-energy devices. Nevertheless, the normal crystalline structure of silicon that is currently used has physical properties that limit light absorption/emission processes and other advanced technological applications. In contrast, different crystalline forms of silicon with alternative physical properties can overcome these challenges and impact a range of technologies including solid-state detectors, optical communication, and energy conversion devices, while simultaneously maintaining the intrinsic advantages of silicon, such as natural abundance and low toxicity. This collaborative research project aims to develop and discover completely new crystalline structures of silicon and silicon-based compounds with enhanced and/or complementary optical and electronic properties using a joint theoretical and experimental strategy. Research is focused on developing recently discovered crystalline forms of silicon, and on revealing novel synthetic approaches to achieve additional silicon-based materials with computational guidance. In contrast to conventional synthetic approaches that take place at high temperatures and low pressures, access to new silicon structures in this project is enabled by the utilization of very high pressures (up to one hundred thousand times atmospheric pressure) and moderate temperatures. These unique processing conditions provide access to new silicon structures possessing a range of physical properties that extend beyond those of the normal form of silicon that is currently used. This research project is executed within an educational environment that promotes the academic development of students and postdoctoral scholars and emphasizes science, technology, engineering and math (STEM) career trajectories. The methodologies developed for this project are expected to be generalizable to other classes of materials beyond silicon. Technical description: Modern computational methods predict the existence of new materials and their properties with remarkable accuracy. Nevertheless, practical synthetic strategies are needed to access a plethora of hypothetical materials with superlative properties. This collaborative research project explores the depth of realizable materials for silicon and probes the relationships between metastable allotropes/compounds and optoelectronic properties in order to achieve new structures of silicon with properties that exceed or complement the normal diamond-cubic form. Accompanying the development of two novel silicon allotropes (Si24 and 4H-Si) via crystal growth, doping, strain engineering and properties optimization, the discovery of additional silicon allotropes and compounds is enabled using unique high-pressure synthetic methods guided by ab initio transition pathway and structure searching predictions. The comprehensive exploration of complex potential energy surfaces is facilitated through the development of computationally efficient machine learning methodologies. The research expands the library of synthetic routes to kinetically controlled silicon-based materials using novel precursors, and the intrinsic optical and electronic transport properties of new silicon allotropes and compounds are determined experimentally. The overall goal of the project is to produce and characterize new silicon phases with enhanced optoelectronic function and the potential to inform next-generation technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:硅是大多数现代电子和太阳能设备的基本半导体。然而,目前使用的硅的正常晶体结构具有限制光吸收/发射过程和其他先进技术应用的物理性质。相比之下,具有替代物理特性的不同晶体形式的硅可以克服这些挑战,并影响一系列技术,包括固态探测器,光通信和能量转换设备,同时保持硅的固有优势,如天然丰度和低毒性。该合作研究项目旨在开发和发现硅和硅基化合物的全新晶体结构,具有增强和/或互补的光学和电子特性,采用联合理论和实验策略。研究的重点是开发最近发现的硅的晶体形式,并揭示新的合成方法,以实现额外的硅基材料与计算指导。与在高温和低压下进行的传统合成方法相反,在该项目中,通过利用非常高的压力(高达大气压的十万倍)和中等温度,能够获得新的硅结构。这些独特的加工条件提供了获得新的硅结构的途径,这些结构具有一系列物理特性,这些物理特性超出了目前使用的正常形式的硅的物理特性。该研究项目在促进学生和博士后学者的学术发展并强调科学,技术,工程和数学(STEM)职业轨迹的教育环境中执行。为该项目开发的方法有望推广到硅以外的其他类型的材料。 技术说明:现代计算方法预测新材料的存在及其性能具有显着的准确性。然而,需要实用的合成策略来获得过多的具有最佳性能的假设材料。该合作研究项目探索硅的可实现材料的深度,并探索亚稳态同素异形体/化合物与光电性能之间的关系,以实现具有超过或补充正常金刚石立方形式的性能的硅的新结构。随着两种新型硅同素异形体(Si 24和4 H-Si)通过晶体生长、掺杂、应变工程和性能优化的发展,使用由从头算过渡途径和结构搜索预测指导的独特高压合成方法能够发现额外的硅同素异形体和化合物。通过开发计算效率高的机器学习方法,促进了对复杂势能表面的全面探索。该研究将合成路线库扩展到使用新型前体的动力学控制的硅基材料,并通过实验确定新硅同素异形体和化合物的固有光学和电子输运性质。该项目的总体目标是生产和表征具有增强的光电功能和告知下一代技术的潜力的新硅相。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Zhu其他文献

A preliminary study on the relationship between environmental endocrine disruptors and precocious puberty in girls
环境内分泌干扰物与女童性早熟关系的初步研究
Cloning and sequence analysis of a flavanone 3-hydroxylase gene from Prunus persica (L.) Batsch
桃黄酮3-羟化酶基因的克隆及序列分析
MicroRNA-351-5p mediates skeletal myogenesis by directly targeting lactamase-b and is regulated by lnc-mg
MicroRNA-351-5p 通过直接靶向内酰胺酶-b 介导骨骼肌生成并受 lnc-mg 调节
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Jingjing Du;Peiwen Zhang;Xue Zhao;Jin He;Yan Xu;Qin Zou;Jia Luo;Linyuan Shen;Hao Gu;Qianzi Tang;Mingzhou Li;Yanzhi Jiang;Guoqing Tang;Bai Lin;Xuewei Li;Jinyong Wang;Shunhua Zhang;Li Zhu
  • 通讯作者:
    Li Zhu
Encapsulation efficiency and release of citral using methylcellulose as emulsifier and interior wall material in composite polysaccharide microcapsules
甲基纤维素作为乳化剂和内壁材料复合多糖微胶囊对柠檬醛的包封率和释放
  • DOI:
    10.1002/adv.22089
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    You Zhou;Xueqiong Yin;Juan Chen;Dachun Feng;Li Zhu
  • 通讯作者:
    Li Zhu
MicroRNA-143a-3p modulates preadipocyte proliferation and differentiation by targeting MAPK7
MicroRNA-143a-3p 通过靶向 MAPK7 调节前脂肪细胞增殖和分化
  • DOI:
    10.1016/j.biopha.2018.09.080
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Peiwen Zhang;Jingjing Du;Linghui Wang;Lili Niu;Ye Zhao;Guoqing Tang;Yanzhi Jiang;Surong Shuai;Lin Bai;Xuewei Li;Jinyong Wang;Shunhua Zhang;Li Zhu
  • 通讯作者:
    Li Zhu

Li Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了