BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
基本信息
- 批准号:2226936
- 负责人:
- 金额:$ 54.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Boosting Research Ideas for Transformative and Equitable Advances in Engineering (BRITE) Pivot award will fund research that enables the intelligent deployment of optimal strategies for mitigating the damaging effects of rain-induced flooding, thereby promoting the progress of science and advancing the national prosperity, welfare, and health. Climate change is causing more frequent extreme weather events, like heavy rains, with disastrous consequences to infrastructure, public health, and national security. As the population grows and new urban centers develop, flood mitigation becomes a complex task that requires high-level coordination, is time critical, occurs in the presence of uncertainty and lack of full observability, and may be only partially feasible due to infrastructure constraints. This project will build a control framework powered by artificial intelligence to operate reservoirs in an optimal way for regulating streamflow while accounting for incomplete data acquisition, unpredictable effects of extreme weather, and ethical decision-making. The results from this research will benefit the scientific communities of hydrologic systems, control, and robotics, with applications also to intelligent systems with machine ethics. In addition, this project will provide undergraduate research opportunities and outreach activities, including educational materials for K-6 students to learn how climate change affects people’s lives, with emphasis on enhancing diversity, equity, and inclusion.This research aims to make fundamental contributions to methods for combining physics-informed and recurrent neural networks to predict the evolution of dynamic systems while also quantifying the effects of uncertainty, as well as for constructing learning-based control synthesis algorithms for complex high-level tasks that are temporally constrained and potentially infeasible in a partially observable environment. Data collected from US Geological Survey stations will be used to parameterize hillslope-link hydrologic models for streamflow forecasts. Small model simulations will then be combined with machine learning techniques to forecast streamflows with uncertainty quantification. Next, a formal description of the flood mitigation task that also accounts for lack of observability will be used to characterize the cost of violating temporal and economic constraints and ethical preferences. Finally, reinforcement learning techniques will be used to train a control agent to intelligently accomplish infeasible tasks to the greatest possible degree. A case study of the flood of 2008 of the Iowa-Cedar Watershed will be used to demonstrate the model development and control framework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项促进工程变革和公平进步的研究理念(BRITE)支点奖将资助能够智能部署最佳策略的研究,以减轻降雨引发的洪水的破坏性影响,从而促进科学进步,促进国家繁荣、福利和健康。气候变化正在导致更频繁的极端天气事件,如暴雨,给基础设施、公共卫生和国家安全带来灾难性后果。随着人口的增长和新城市中心的发展,防洪成为一项复杂的任务,需要高水平的协调,时间紧迫,发生在存在不确定性和缺乏完全可观测性的情况下,由于基础设施的限制,可能只有部分可行。该项目将建立一个由人工智能驱动的控制框架,在考虑数据采集不完整、极端天气的不可预测影响和道德决策的情况下,以最佳方式调节水库的流量。这项研究的结果将有利于水文系统、控制和机器人的科学界,也将应用于具有机器伦理的智能系统。此外,该项目将为本科生提供研究机会和外展活动,包括为K-6年级学生提供教材,以了解气候变化如何影响人们的生活,重点是加强多样性、公平性和包容性。本研究旨在为结合物理信息和循环神经网络的方法做出基础贡献,以预测动态系统的演变,同时量化不确定性的影响,以及为复杂的高级任务构建基于学习的控制综合算法,这些任务在时间上受到限制,并且在部分可观察的环境中可能不可行。从美国地质调查局站收集的数据将用于参数化山坡连接的水文模型,用于流量预报。然后,小型模型模拟将与机器学习技术相结合,以不确定性量化预测流量。接下来,对洪水缓解任务的正式描述也考虑到缺乏可观察性,将用于描述违反时间和经济约束以及道德偏好的成本。最后,将使用强化学习技术来训练控制代理,以最大程度地智能完成不可行的任务。以2008年爱荷华-雪松流域的洪水为例,演示模型开发和控制框架。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Model-based motion planning in POMDPs with temporal logic specifications
具有时间逻辑规范的 POMDP 中基于模型的运动规划
- DOI:10.1080/01691864.2023.2226191
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Li, Junchao;Cai, Mingyu;Wang, Zhaoan;Xiao, Shaoping
- 通讯作者:Xiao, Shaoping
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaoping Xiao其他文献
Model-free reinforcement learning for motion planning of autonomous agents with complex tasks in partially observable environments
用于在部分可观察环境中执行复杂任务的自主代理的运动规划的无模型强化学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Junchao Li;Mingyu Cai;Zhen Kan;Shaoping Xiao - 通讯作者:
Shaoping Xiao
Molecular dynamics modeling and simulation of lubricant between sliding solids
滑动固体间润滑剂的分子动力学建模与模拟
- DOI:
10.1142/s2424913017500096 - 发表时间:
2017-06 - 期刊:
- 影响因子:0
- 作者:
Mir Ali Ghaffari;Yan Zhang;Shaoping Xiao - 通讯作者:
Shaoping Xiao
Peridynamics with Corrected Boundary Conditions and Its Implementation in Multiscale Modeling of Rolling Contact Fatigue
修正边界条件的近场动力学及其在滚动接触疲劳多尺度建模中的实现
- DOI:
10.1142/s1756973718410032 - 发表时间:
2019-05 - 期刊:
- 影响因子:1.5
- 作者:
Mir Ali Ghaffari;Yanjue Gong;Siamak Attarian;Shaoping Xiao - 通讯作者:
Shaoping Xiao
Reinforcement learning-based motion planning in partially observable environments under ethical constraints
道德约束下部分可观察环境中基于强化学习的运动规划
- DOI:
10.1007/s43681-024-00441-6 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Junchao Li;Mingyu Cai;Shaoping Xiao - 通讯作者:
Shaoping Xiao
Studies of TiB and Ti-TiB composites at multiple scales
多尺度 TiB 及 Ti-TiB 复合材料的研究
- DOI:
10.1016/j.jallcom.2025.180441 - 发表时间:
2025-05-05 - 期刊:
- 影响因子:6.300
- 作者:
Yingbin Chen;Akram Ghaffarigharehbagh;Shaoping Xiao - 通讯作者:
Shaoping Xiao
Shaoping Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaoping Xiao', 18)}}的其他基金
Machine Learning–Enhanced Multiscale Modeling of Spatially Tailored Materials
机器学习 - 空间定制材料的增强多尺度建模
- 批准号:
2104383 - 财政年份:2021
- 资助金额:
$ 54.71万 - 项目类别:
Continuing Grant
SGER: A Nanoelectromechanical Design for Carbon Nanotube-Based Memory Cells at Finite Temperatures
SGER:有限温度下基于碳纳米管的存储单元的纳米机电设计
- 批准号:
0630153 - 财政年份:2006
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
相似海外基金
`Spirit Use Case 1: Pivot Door Thrust Reverser
`Spirit 用例 1:枢轴门推力反向器
- 批准号:
10088948 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Collaborative R&D
BRITE Pivot: Micro-Macro Modeling of Reactive Flow and Rock Weathering Enhanced by Artificial Intelligence
BRITE Pivot:人工智能增强的反应流和岩石风化的微观-宏观建模
- 批准号:
2416344 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
CCRI: Planning-M: Midwest Pivot Array for Autonomous Agricultural Sensing at Scale
CCRI:Planning-M:用于大规模自主农业传感的中西部枢轴阵列
- 批准号:
2235134 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
BRITE Pivot: Accelerating Manufacturing and Realization of Perovskite Micro-Light Emitting Device (Micro-LED) Displays through Data-driven Learning
BRITE Pivot:通过数据驱动学习加速钙钛矿微发光器件 (Micro-LED) 显示器的制造和实现
- 批准号:
2227285 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
BRITE Pivot: Emergent Mechanics and Non-Hermitian Dynamics of Odd Elastic Solids
BRITE Pivot:奇数弹性固体的涌现力学和非厄米动力学
- 批准号:
2227474 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
BRITE Pivot: Growing Biological Methods to Improve Soil Behavior for Infrastructure Protection
BRITE 支点:不断发展生物方法来改善土壤行为以保护基础设施
- 批准号:
2227491 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
- 批准号:
2227496 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321090 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
BRITE Pivot: Investigating the Role of Collagen Piezoelectricity in Biomineralization Enhanced by Force Inputs
BRITE Pivot:研究胶原蛋白压电性在力输入增强的生物矿化中的作用
- 批准号:
2227527 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant