BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems

BRITE Pivot:流固耦合问题的量子计算和机器学习

基本信息

  • 批准号:
    2227496
  • 负责人:
  • 金额:
    $ 53.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This Boosting Research Ideas for Transformative and Equitable Advances in Engineering (BRITE) Pivot award will fund research that accelerates the discovery of solutions to grand challenges involving interactions between fluids and solids, with applications to aquatic habitat restoration, optimized energy efficiency of turbine generators, and the study and treatment of heart disease, thereby promoting the progress of science and advancing the national prosperity, welfare, and health. Understanding the physics of fluid-structure interactions is a critical prerequisite for such progress. Advanced computational tools play an important role but are limited by resource and time constraints, even on existing supercomputers. This project will address these limitations by developing new computational tools that rely on state-of-the-art machine learning and quantum computing techniques and that also anticipate implementation on future generations of quantum computers. Quantum computing is still five to ten years away from a practical gate-based digital quantum computer but has shown promise for handling probabilistic rather than deterministic problems already on available quantum computers and by inspiring new algorithms for classical computers. Machine learning has revolutionized many industries such as image/speech recognition and is expected to have a great impact on scientific computing. This research is integrated with activities that aim to increase interest in science, technology, engineering, and math among the public and students, including through accessible online videos, new curricular content, and integration of undergraduate students in interdisciplinary research.This research aims to make fundamental contributions to the computational study of turbulent fluid-structure interactions by pivoting from classical approaches to new computing concepts, namely quantum computing and machine learning, enabling significant improvements in computational speed and efficiency for both forward and inverse problems. Consistent with the probabilistic perspectives that underpin both quantum computing and machine learning, a key concept of this research is reformulating traditional fluid-structure interaction problems into probabilistic ones. To this end, this project will extend the filtered density function approach for turbulence modeling to large-eddy simulations of particle-turbulence interactions, develop scientific machine learning techniques for inverse discovery of closure terms and forward and inverse prediction of fluid-structure interactions for energy harvesting applications, and develop quantum-ready and quantum-inspired algorithms for mixing applications. These developments will help the principal investigator gain expertise in novel research tools that have the potential to lead to significant advancement of fundamental knowledge and enable application to problems as diverse as cardiovascular flows, bioinspired flow control and sensing, or control of biomimetic aquatic robots.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
工程领域变革性和公平性进步研究理念奖(BRITE)将用于资助研究,以加速发现解决涉及流体和固体之间相互作用的重大挑战的解决方案,并将其应用于水生栖息地恢复、涡轮发电机的优化能效以及心脏病的研究和治疗,从而促进科学进步,促进国家繁荣、福利和健康。理解流体-结构相互作用的物理学是取得这一进展的关键前提。先进的计算工具发挥着重要作用,但受到资源和时间限制的限制,即使在现有的超级计算机上也是如此。该项目将通过开发依赖最先进的机器学习和量子计算技术的新计算工具来解决这些限制,并预计在未来几代量子计算机上实施。量子计算距离实用的基于门的数字量子计算机还有五到十年的时间,但已经显示出处理现有量子计算机上已经存在的概率问题而不是确定性问题的希望,并通过启发经典计算机的新算法来实现。机器学习已经给图像/语音识别等许多行业带来了革命性的变化,并有望对科学计算产生巨大影响。这项研究与旨在提高公众和学生对科学、技术、工程和数学兴趣的活动相结合,包括通过可访问的在线视频、新的课程内容以及本科生参与跨学科研究的整合。本研究旨在通过从经典方法转向新的计算概念,即量子计算和机器学习,为湍流流体-结构相互作用的计算研究做出基础性贡献,从而显著提高正问题和反问题的计算速度和效率。与支撑量子计算和机器学习的概率观点一致,这项研究的一个关键概念是将传统的流固耦合问题重新表述为概率问题。为此,该项目将把用于湍流建模的过滤密度函数方法扩展到粒子-湍流相互作用的大涡模拟,开发用于反向发现闭合项和用于能量收集应用的流体-结构相互作用的正反向预测的科学机器学习技术,并开发用于混合应用的量子就绪和量子启发的算法。这些发展将帮助首席研究人员获得新研究工具方面的专业知识,这些工具有可能导致基础知识的显著进步,并使其能够应用于各种问题,如心血管流动、生物灵感流动控制和传感,或仿生水生机器人的控制。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iman Borazjani其他文献

Re-scaling of a fractional step method for low Reynolds number flows and fluid-structure-interaction
用于低雷诺数流动和流固耦合的分数步方法的重新缩放
  • DOI:
    10.1016/j.jfluidstructs.2025.104331
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Utkarsh Mishra;Iman Borazjani
  • 通讯作者:
    Iman Borazjani
Large eddy simulations of supersonic flow over a cylinder using an immersed boundary method
使用浸入边界法对圆柱体上的超音速流进行大涡模拟
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Akbarzadeh;Iman Borazjani
  • 通讯作者:
    Iman Borazjani

Iman Borazjani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iman Borazjani', 18)}}的其他基金

CDS&E: A Validated Hybrid Echo-CFD Framework for Patient-Specific Cardiac Assessment
CDS
  • 批准号:
    2152869
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
  • 批准号:
    2309630
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling Flow Separation via Traveling Wave Actuators
合作研究:通过行波执行器控制流动分离
  • 批准号:
    1905355
  • 财政年份:
    2019
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
CAREER: Fluid-Structure Interaction (FSI) in Biological Flows
职业:生物流中的流固耦合 (FSI)
  • 批准号:
    1829408
  • 财政年份:
    2018
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
CAREER: Fluid-Structure Interaction (FSI) in Biological Flows
职业:生物流中的流固耦合 (FSI)
  • 批准号:
    1453982
  • 财政年份:
    2015
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant

相似海外基金

`Spirit Use Case 1: Pivot Door Thrust Reverser
`Spirit 用例 1:枢轴门推力反向器
  • 批准号:
    10088948
  • 财政年份:
    2024
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Collaborative R&D
BRITE Pivot: Micro-Macro Modeling of Reactive Flow and Rock Weathering Enhanced by Artificial Intelligence
BRITE Pivot:人工智能增强的反应流和岩石风化的微观-宏观建模
  • 批准号:
    2416344
  • 财政年份:
    2024
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
CCRI: Planning-M: Midwest Pivot Array for Autonomous Agricultural Sensing at Scale
CCRI:Planning-M:用于大规模自主农业传感的中西部枢轴阵列
  • 批准号:
    2235134
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
BRITE Pivot: Accelerating Manufacturing and Realization of Perovskite Micro-Light Emitting Device (Micro-LED) Displays through Data-driven Learning
BRITE Pivot:通过数据驱动学习加速钙钛矿微发光器件 (Micro-LED) 显示器的制造和实现
  • 批准号:
    2227285
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
  • 批准号:
    2226936
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
BRITE Pivot: Emergent Mechanics and Non-Hermitian Dynamics of Odd Elastic Solids
BRITE Pivot:奇数弹性固体的涌现力学和非厄米动力学
  • 批准号:
    2227474
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
BRITE Pivot: Growing Biological Methods to Improve Soil Behavior for Infrastructure Protection
BRITE 支点:不断发展生物方法来改善土壤行为以保护基础设施
  • 批准号:
    2227491
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321090
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
BRITE Pivot: Investigating the Role of Collagen Piezoelectricity in Biomineralization Enhanced by Force Inputs
BRITE Pivot:研究胶原蛋白压电性在力输入增强的生物矿化中的作用
  • 批准号:
    2227527
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了