Collaborative Research: CPS: Small: An Integrated Reactive and Proactive Adversarial Learning for Cyber-Physical-Human Systems
协作研究:CPS:小型:网络-物理-人类系统的集成反应式和主动式对抗学习
基本信息
- 批准号:2227185
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The gradual deployment of self-driving cars will inevitably lead to the emergence of a new important class of cyber-physical-human systems where autonomous vehicles interact with human-driven vehicles via on-board sensors or vehicle-to-vehicle communications. Reinforcement learning along with control theory can help meet the safety requirements for real-time decision making and Level 5 autonomy in self-driving vehicles. However, it is widely known that conventional reinforcement learning policies are vulnerable to adversarial or non-adversarial perturbations to their observations, similar to adversarial examples for classifiers and/or reward (packet) drops of the learning. Such issues are exacerbated by concerns of addressing resiliency as the use of open communication and control platforms for autonomy becomes essential, and as the industry continues to invest in such systems. Decision making mechanisms, designed to incorporate agility with the help of reinforcement learning, allow self-adaptation, self-healing, and self-optimization. This research will contribute and unify the body of knowledge of several diverse fields including reinforcement learning, security, automatic control, and transportation for resilient autonomy with humans-in-the-loop.In this project, to counter action and observation manipulation as well as reward drops, the principal investigators will leverage proactive switching policies that aim (i) to provide robustness to adversarial inputs and reward drops in the closed-loop reinforcement learning mechanisms, (ii) to increase the cost of manipulation by deception, (iii) to limit the exposure of vulnerable actions and observations, and (iv) to provide stability, optimality, and robustness guarantees. Ultimately, the investigators will develop fundamental contributions to each of the above-mentioned fields and amalgamate these fields to provide a unique synthesis framework. The outcomes of this project will increase levels of confidence in autonomous technologies from ethical perspectives by providing an underpinning for curtailing accidents. The proposed framework can be extended to other key enablers of the global economy, including smart and connected cities, healthcare, and networked actions of smart systems while decreasing environmental pollution and minimizing the adverse environmental impacts on human health. The project will train the next generation of students from various levels, ages, and cultures through well-coordinated, level appropriate involvement in research and educational activities while providing a unique opportunity for the students to appreciate efficient, autonomous, and low-cost designs. This project will also contribute to future engineering curricula, pursue a substantial integration of research and education, and provide opportunities to engage students from the underrepresented group.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动驾驶汽车的逐步部署将不可避免地导致一类新的重要的网络-物理-人类系统的出现,其中自动驾驶汽车通过车载传感器或车对车通信与人类驾驶的汽车进行交互。强化学习沿着控制理论可以帮助满足自动驾驶车辆实时决策和5级自主的安全要求。然而,众所周知,传统的强化学习策略容易受到对其观察结果的对抗性或非对抗性扰动的影响,类似于分类器和/或学习的奖励(数据包)丢弃的对抗性示例。随着使用开放式通信和控制平台实现自主变得至关重要,以及随着行业继续投资于此类系统,解决弹性问题的担忧加剧了这些问题。决策机制,旨在结合敏捷性与强化学习的帮助下,允许自适应,自我修复和自我优化。这项研究将有助于并统一几个不同领域的知识体系,包括强化学习,安全,自动控制和运输,以实现弹性自主与人在环。在这个项目中,为了对抗行动和观察操纵以及奖励下降,主要调查人员将利用积极主动的转换政策,目的是:在闭环强化学习机制中提供对抗性输入和奖励下降的鲁棒性,(ii)增加欺骗操纵的成本,(iii)限制易受攻击的动作和观察的暴露,以及(iv)提供稳定性,最优性,和鲁棒性保证。最终,研究人员将为上述每个领域做出基本贡献,并合并这些领域,以提供一个独特的综合框架。该项目的成果将通过为减少事故提供基础,从道德角度提高对自主技术的信心。拟议的框架可以扩展到全球经济的其他关键推动因素,包括智能和互联城市,医疗保健和智能系统的网络行动,同时减少环境污染并最大限度地减少对人类健康的不利环境影响。该项目将通过良好协调,适当参与研究和教育活动,培养来自不同层次,年龄和文化的下一代学生,同时为学生提供欣赏高效,自主和低成本设计的独特机会。该项目还将有助于未来的工程课程,追求研究和教育的实质性整合,并提供机会,使学生从代表性不足的group.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cooperative Finitely Excited Learning for Dynamical Games
- DOI:10.1109/tcyb.2023.3274908
- 发表时间:2023-05
- 期刊:
- 影响因子:11.8
- 作者:Yongliang Yang;H. Modares;K. Vamvoudakis;F. Lewis
- 通讯作者:Yongliang Yang;H. Modares;K. Vamvoudakis;F. Lewis
Game Theory for Autonomy: From Min-Max Optimization to Equilibrium and Bounded Rationality Learning
- DOI:10.23919/acc55779.2023.10156432
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:K. Vamvoudakis;Filippos Fotiadis;J. Hespanha;Raphael Chinchilla;Guosong Yang;Mushuang Liu;J. Shamma;Lacra Pavel
- 通讯作者:K. Vamvoudakis;Filippos Fotiadis;J. Hespanha;Raphael Chinchilla;Guosong Yang;Mushuang Liu;J. Shamma;Lacra Pavel
Decentralized Multi-Agent Motion Planning in Dynamic Environments
动态环境中的分散式多智能体运动规划
- DOI:10.23919/acc55779.2023.10156024
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Netter, Josh;Vamvoudakis, Kyriakos G.
- 通讯作者:Vamvoudakis, Kyriakos G.
Verification of Adversarially Robust Reinforcement Learning Mechanisms in Aerospace Systems
航空航天系统中对抗性鲁棒强化学习机制的验证
- DOI:10.2514/6.2023-1070
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Seo, Taehwan;Sahoo, Prachi P.;Vamvoudakis, Kyriakos G.
- 通讯作者:Vamvoudakis, Kyriakos G.
An Online Model-Following Projection Mechanism Using Reinforcement Learning
- DOI:10.1109/tac.2023.3243165
- 发表时间:2023-02
- 期刊:
- 影响因子:6.8
- 作者:M. Abouheaf;Hashim A. Hashim-Hashim-A.-Hashim-36452482;M. Mayyas;K. Vamvoudakis
- 通讯作者:M. Abouheaf;Hashim A. Hashim-Hashim-A.-Hashim-36452482;M. Mayyas;K. Vamvoudakis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyriakos G Vamvoudakis其他文献
Dynamic Intermittent Feedback Design for H∞ Containment Control on a Directed Graph
有向图上 H 遏制控制的动态间歇反馈设计
- DOI:
10.1109/tcyb.2019.2933736 - 发表时间:
2020 - 期刊:
- 影响因子:11.8
- 作者:
Yongliang Yang;Hamidreza Modares;Kyriakos G Vamvoudakis;Yixin Yin;Donald C Wunsch - 通讯作者:
Donald C Wunsch
Kyriakos G Vamvoudakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyriakos G Vamvoudakis', 18)}}的其他基金
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
- 批准号:
2038589 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
S&AS: INT: COLLAB: Aerodynamic Intelligent Morphing System (A-IMS) for Autonomous Smart Utility Truck Safety and Productivity in Severe Environments
S
- 批准号:
1849198 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Towards an Intermittent Learning Framework for Smart and Efficient Cyber-Physical Autonomy
职业:走向智能高效的网络物理自治的间歇性学习框架
- 批准号:
1851588 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER: Towards an Intermittent Learning Framework for Smart and Efficient Cyber-Physical Autonomy
职业:走向智能高效的网络物理自治的间歇性学习框架
- 批准号:
1750789 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2423130 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant