I-Corps: Analyzing Customer Behavior for Energy Usage Moderation

I-Corps:分析客户行为以节制能源使用

基本信息

  • 批准号:
    2227275
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the potential development of an optimization algorithm that could identify energy consumption patterns that may enable moderation and management of electricity consumption. This technology could help in infrastructure planning, enhance customer relations by understanding the customer's energy behavior, and provide individualized or customized feedback to avoid circuit overload, power quality issues, and power outages (blackouts) which are major problems for the electricity utility and microgrid companies. There is an unmet need to understand customer energy behavior patterns in different geographies and demographics to help create informed decision-making on infrastructure planning and deployment. In addition to application in electricity utility companies, this technology can potentially be adapted for deployment in other applications that require utility infrastructure planning and consumer behavior change, such as gas and water distribution.This I-Corps project is based on the development of a proprietary automatic multi-parametric optimization and machine learning clustering algorithm that could forecast upcoming load on the electrical grid. This is done by analyzing overall and personalized energy consumption by consumers based on variables reflecting localized geography, weather conditions, seasonal conditions (winter vs summer), and time and day electricity consumption as well as demographics. Using multi-parametric variables, a regularization-based optimization algorithm is developed that decouples the contribution of each influencing factor in load consumption to avoid circuit overload and power quality issues. To avoid blackouts, the output of the multi-parametric optimization is combined with a proprietary machine-learning clustering technique that analyzes the load consumption behavior/ pattern in different demographics and maps behavior with the population density to improve load forecast for better accuracy to avoid power outages. The combination of multi-parametric optimization and clustering helps to identify customer load patterns and hence could help in identifying highly accurate load forecast for load balancing which will eliminate blackouts in a region.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目的更广泛的影响/商业潜力是开发一种优化算法的潜力,这种算法可以识别能源消耗模式,从而能够调节和管理电力消耗。这项技术可以帮助基础设施规划,通过了解客户的能源行为来增强客户关系,并提供个性化或定制的反馈,以避免电路过载,电力质量问题和停电(停电),这些都是电力公司和微电网公司的主要问题。了解不同地理位置和人口统计数据的客户能源行为模式,以帮助在基础设施规划和部署方面做出明智的决策,这一需求尚未得到满足。除了在电力公司的应用外,该技术还可以应用于其他需要公用事业基础设施规划和消费者行为改变的应用,例如天然气和水的分配。I-Corps项目基于专有的自动多参数优化和机器学习聚类算法的开发,可以预测电网上即将到来的负载。这是通过分析消费者的整体和个性化能源消耗来完成的,这些能源消耗是基于反映当地地理、天气条件、季节条件(冬季与夏季)、时间和日用电量以及人口统计的变量。使用多参数变量,开发了一种基于正则化的优化算法,该算法可以使负载消耗中每个影响因素的贡献加倍,以避免电路过载和电能质量问题。为了避免停电,多参数优化的输出与专有的机器学习聚类技术相结合,该技术分析不同人口统计中的负荷消耗行为/模式,并将行为与人口密度进行映射,以提高负荷预测的准确性,从而避免停电。多参数优化和聚类的结合有助于识别客户负载模式,从而有助于识别高度准确的负载预测,以实现负载平衡,从而消除区域停电。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Madhur Srivastava其他文献

Enabling structural evolution of intrinsically disordered proteins using pulsed dipolar ESR spectroscopy
  • DOI:
    10.1016/j.bpj.2023.11.1365
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Karen Tsay;Timothy Keller;Yann Fichou;Jack H. Freed;Songi Han;Madhur Srivastava
  • 通讯作者:
    Madhur Srivastava
A New Wavelet Approach to Remove Noise from Experimental Signals: Reducing Signal Acquisition Times and Improving Resolution in Biophysical Methods
  • DOI:
    10.1016/j.bpj.2017.11.2047
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Madhur Srivastava;Jack H. Freed
  • 通讯作者:
    Jack H. Freed
Enabling dynamics studies of proteins at low concentrations using electron spin resonance
使用电子自旋共振对低浓度蛋白质进行动力学研究
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    William Bekerman;Madhur Srivastava
  • 通讯作者:
    Madhur Srivastava
Entropy Conserving Binarization Scheme for Video and Image Compression
视频和图像压缩的熵守二值化方案
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Madhur Srivastava
  • 通讯作者:
    Madhur Srivastava
Revealing Multiple Conformations of Proteins at Long Distances by using Singular Value Decomposition Method in Pulsed Dipolar ESR Spectroscopy
  • DOI:
    10.1016/j.bpj.2018.11.935
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Madhur Srivastava;Jack H. Freed
  • 通讯作者:
    Jack H. Freed

Madhur Srivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Madhur Srivastava', 18)}}的其他基金

I-Corps: Developing A Blood-Based Biomarker for the Detection and Monitoring of Amyotrophic Lateral Sclerosis
I-Corps:开发一种基于血液的生物标志物,用于检测和监测肌萎缩侧索硬化症
  • 批准号:
    2317745
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
PFI-TT: Enabling More Scans per Machine through in Magnetic Resonance Imaging Data Processing
PFI-TT:通过磁共振成像数据处理实现每台机器的更多扫描
  • 批准号:
    2044599
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Software-based approach enabling faster magnetic resonance imaging scans
I-Corps:基于软件的方法可实现更快的磁共振成像扫描
  • 批准号:
    1935476
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Algorithms for Analyzing Faulty Data Using Domain Information
EAGER:使用域信息分析错误数据的算法
  • 批准号:
    2414736
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
IUSE: Conservation Principles, Illustrated: Analyzing the Impact of Informal Visual Learning Tools on Educational Engineering Through Comics
IUSE:保护原则,图解:通过漫画分析非正式视觉学习工具对教育工程的影响
  • 批准号:
    2235827
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327892
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327893
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Scalable Software Infrastructure for Analyzing Complex Networks
职业:用于分析复杂网络的可扩展软件基础设施
  • 批准号:
    2339607
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CRII: SHF: An Automated and User-centered Framework for Reproducing System-level Concurrency Bugs by Analyzing Bug Reports
CRII:SHF:通过分析错误报告来重现系统级并发错误的自动化且以用户为中心的框架
  • 批准号:
    2348277
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Analyzing and Categorizing Manga and Children's Books for Extensive Reading in German
对德语漫画和儿童读物进行分析和分类以供泛读
  • 批准号:
    24K04027
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SaTC: CORE: Medium: Hardware Security Insights: Analyzing Hardware Designs to Understand and Assess Security Weaknesses and Vulnerabilities
协作研究:SaTC:核心:中:硬件安全见解:分析硬件设计以了解和评估安全弱点和漏洞
  • 批准号:
    2247755
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Analyzing the mechanism of the effects of Fusobacterium cooperated with cancer-associated fibroblasts on gastrointestinal cancers
梭杆菌协同癌相关成纤维细胞对胃肠道肿瘤的作用机制分析
  • 批准号:
    23K15435
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Differentiating the biological effects of vaping from smoking by analyzing the methylome and transcriptome
通过分析甲基化组和转录组区分电子烟和吸烟的生物学效应
  • 批准号:
    10588059
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了