Structure exploiting Galerkin schemes for optimization problems with pde constraints
利用伽辽金方案解决具有偏微分方程约束的优化问题的结构
基本信息
- 批准号:25269171
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2006
- 资助国家:德国
- 起止时间:2005-12-31 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with the development of tailored discrete concepts and numerical algorithms for pde constrained optimization problems including control and state constraints. The mathematical analysis and numerical treatment of optimization problems with pde constraints necessitates the improvement of existing and the development of new mathematical concepts in algorithms, analysis and discretization. The major goal in pde constraint optimization consists in developing discrete concepts and algorithms which obey the relationeffort of optimization > constanteffort of simulationwith a constant of moderate size. In order to achieve this goal in this project we(a) propose a tailored discrete concept for optimization problems with nonlinear pdes including control constraints, and(b) develop a new discrete concept in pde constrained optimization with state constraints. For both cases we provide numerical analysis, including convergence proofs and adapted numerical algorithms.The key idea consists in conserving as much as possible structure of the infinite-dimensional KKT (Karush-Kuhn-Tucker) system on the discrete level, and to appropriately mimic the functional analytic relations of the KKT system through suitably chosen Ansätze for the variables involved. In a second application period we would be in position to combine the developed discretization strategies with hierarchical solution concepts for pde constrained optimization problems, such as multigrid methods, and to incorporate them into adaptive refinement strategies for pde constrained optimization strategies.
本计画主要针对包含控制与状态限制之偏微分方程限制最佳化问题,发展特制离散化概念与数值演算法。对偏微分方程约束优化问题的数学分析和数值处理,需要在算法、分析和离散化方面改进现有的数学概念,并发展新的数学概念。偏微分方程约束优化的主要目标在于发展离散的概念和算法,使其服从优化的关系 >恒定的模拟效果,具有中等大小的常数。为了达到这个目标,在这个计画中,我们(a)提出一个适用于包含控制限制的非线性偏微分方程最佳化问题的离散化概念,以及(B)在包含状态限制的偏微分方程最佳化问题中发展一个新的离散化概念。对于这两种情况,我们提供了数值分析,包括收敛性证明和适应的数值algorithm.The关键思想在于尽可能多地保存的无限维KKT(Karush-Kuhn-Tucker)系统的离散水平上的结构,并适当地模仿KKT系统的功能分析关系,通过适当选择Ansätze的变量。在第二个应用阶段,我们将能够将联合收割机与用于偏微分方程约束优化问题的分层求解概念相结合,如多重网格方法,并将其纳入偏微分方程约束优化策略的自适应精化策略中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Klaus Deckelnick其他文献
Professor Dr. Klaus Deckelnick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Klaus Deckelnick', 18)}}的其他基金
Randwertprobleme für Willmoreflächen - Analysis, Numerik und numerische Analysis -
Willmore 曲面的边界值问题 - 分析、数值和数值分析 -
- 批准号:
81487594 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Exploiting JWST to Unveil Our Icy Universe
利用 JWST 揭示我们的冰冷宇宙
- 批准号:
2906887 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
- 批准号:
BB/X016366/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications - CE-CannPharm
利用受控环境开发用于制药应用的优化大麻表型 - CE-CannPharm
- 批准号:
BB/Z514470/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
- 批准号:
EP/Y033981/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




