BRITE Relaunch: Improving Structural Health by Advancing Interpretable Machine Learning for Nonlinear Dynamics

BRITE 重新启动:通过推进非线性动力学的可解释机器学习来改善结构健康

基本信息

  • 批准号:
    2227495
  • 负责人:
  • 金额:
    $ 37.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

This Boosting Research Ideas for Transformative and Equitable Advances in Engineering (BRITE) Relaunch award will focus on advancing interpretable machine learning to match modeling accuracy with transparency. This will provide structural engineers with a superior and trustworthy tool to model nonlinear dynamical systems. Modeling the complex behaviors of structures and materials under various types of dynamic loads remains a major challenge for smart structures, structural control, nonlinear system identification, damage detection, and earthquake engineering. Machine learning is becoming a popular approach for meeting this challenge. However, there is a significant gap between knowledge of the physics of these systems, the engineering practice design of these systems, and the models produced from machine learning methods. Machine learning lacks interpretability and transparency. This research project will develop systematic solutions with reasoning based on the engineers’ knowledge and training, physics-informed, and empowering the engineers’ judgment. This research directly benefits society in terms of improving infrastructure health, mitigating the consequences of earthquake, wind hazards, and climate change.This research project builds upon the project leader’s past work to advance “nonlinear static function approximation using interpretable machine learning”, given its direct use in approximating nonlinear constitutive relations and its use in approximating nonlinear integrands in ordinary differential equations for nonlinear dynamics. To achieve interpretable and physics-informed machine learning methods, this research project will create new algorithms and implementation procedures. Neuromanifold theories in advanced applied mathematics will be employed to make the training process of sigmoidal neural networks interpretable. Graph theory will be leveraged to create knowledge graphs so that nonlinear static function approximation using interpretable machine learning can be automated during initialization to approximate nonlinear static functions and can be used for deep learning. In addition to extensive cross-validations, a major application of the project's approach will be investigated by using real-world data in a digital twin setting, the state-of-the-art system-level modeling framework in structural engineering. Also, a comprehensive laboratory demonstration and validation will be carried out using timber beam-column joints to generate broad interest in the broad relevance of nonlinear dynamics in structural engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项促进工程变革和公平进步的研究理念(BRITE)重新启动奖将专注于推进可解释机器学习,以匹配建模准确性和透明度。这将为结构工程师提供一个更好的和值得信赖的工具来模拟非线性动力系统。对结构和材料在各种动荷载作用下的复杂行为进行建模是智能结构、结构控制、非线性系统识别、损伤检测和地震工程面临的主要挑战。机器学习正在成为应对这一挑战的一种流行方法。然而,在这些系统的物理知识、这些系统的工程实践设计和机器学习方法产生的模型之间存在着显著的差距。机器学习缺乏可解释性和透明度。该研究项目将基于工程师的知识和培训,以物理为基础,并授权工程师的判断,开发系统的解决方案。这项研究在改善基础设施健康、减轻地震、风力灾害和气候变化的后果方面直接造福社会。该研究项目建立在项目负责人过去的工作基础上,以推进“使用可解释机器学习的非线性静态函数近似”,因为它直接用于近似非线性本构关系,并用于近似非线性动力学的常微分方程中的非线性积分。为了实现可解释和物理信息的机器学习方法,该研究项目将创建新的算法和实现程序。运用高等应用数学中的神经折叠理论,使s型神经网络的训练过程具有可解释性。图论将被用来创建知识图,这样使用可解释的机器学习的非线性静态函数近似可以在初始化过程中自动化,以近似非线性静态函数,并可用于深度学习。除了广泛的交叉验证之外,该项目方法的主要应用将通过使用数字孪生设置中的真实数据进行调查,这是结构工程中最先进的系统级建模框架。此外,将使用木材梁柱节点进行全面的实验室演示和验证,以引起对结构工程中非线性动力学的广泛相关性的广泛兴趣。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jin-Song Pei其他文献

Mem-modeling of strain ratcheting using early-time soil fatigue data
  • DOI:
    10.1007/s11071-024-10621-y
  • 发表时间:
    2024-12-13
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Jin-Song Pei;Joseph P. Wright;Gerald A. Miller;François Gay-Balmaz;Marco B. Quadrelli
  • 通讯作者:
    Marco B. Quadrelli
Correction to: Demonstrating the power of extended Masing models for hysteresis through model equivalencies and numerical investigation
  • DOI:
    10.1007/s11071-022-07446-y
  • 发表时间:
    2022-04-22
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    James L. Beck;Jin-Song Pei
  • 通讯作者:
    Jin-Song Pei

Jin-Song Pei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jin-Song Pei', 18)}}的其他基金

FPGA and Microprocessor-Based Smart Wireless Sensing with Embedded Nonlinear Algorithms for Structural Health Monitoring
基于 FPGA 和微处理器的智能无线传感,具有嵌入式非线性算法,用于结构健康监测
  • 批准号:
    0626401
  • 财政年份:
    2006
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant
Handling Noise-Contaminated Data and Nonunique Identification Results in Wireless Sensor Networks for Structural Health Monitoring
处理结构健康监测无线传感器网络中的噪声污染数据和非唯一识别结果
  • 批准号:
    0332350
  • 财政年份:
    2003
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant

相似海外基金

BRITE Relaunch: Using Cell Shape and Cytoskeletal Organization for Understanding and Predicting Cellular Force Generation
BRITE 重新推出:利用细胞形状和细胞骨架组织来理解和预测细胞力的产生
  • 批准号:
    2227605
  • 财政年份:
    2023
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant
BRITE Relaunch: Examining the Role of Mechanotransduction in Smooth Muscle Cell Phenotype Modulation
BRITE 重新推出:检查机械转导在平滑肌细胞表型调节中的作用
  • 批准号:
    2422794
  • 财政年份:
    2023
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant
BRITE Relaunch: Leak-Proof Tubular Redox Flow Batteries for the Low-Cost and Fire-Safe Storage of Solar and Wind Energy
BRITE 重新推出:防漏管式氧化还原液流电池,用于太阳能和风能的低成本且防火存储
  • 批准号:
    2227265
  • 财政年份:
    2023
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant
BRITE Relaunch: Compact Network Flows for Critical Infrastructure Engineering
BRITE 重新启动:关键基础设施工程的紧凑网络流程
  • 批准号:
    2227548
  • 财政年份:
    2023
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant
BRITE Relaunch: A Physics-Based Simulation Model for Exploring Community Resilience to Wildfires
BRITE 重新启动:基于物理的模拟模型,用于探索社区对野火的抵御能力
  • 批准号:
    2227315
  • 财政年份:
    2023
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant
BRITE Relaunch: Realizing the Benefits of Additive Manufacturing for the Microstructural Control of Polymer Material Systems
BRITE 重新启动:实现增材制造对聚合物材料系统微观结构控制的优势
  • 批准号:
    2227573
  • 财政年份:
    2023
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant
BRITE Relaunch: A Liquid Phase Process for Graphene Manufacturing
BRITE 重新推出:石墨烯制造的液相工艺
  • 批准号:
    2135687
  • 财政年份:
    2022
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant
BRITE Relaunch: Examining the Role of Mechanotransduction in Smooth Muscle Cell Phenotype Modulation
BRITE 重新推出:检查机械转导在平滑肌细胞表型调节中的作用
  • 批准号:
    2135589
  • 财政年份:
    2022
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant
BRITE Relaunch: Persistent and Accessible Maritime Monitoring (PAMM)
BRITE 重新推出:持久且可访问的海事监控 (PAMM)
  • 批准号:
    2135619
  • 财政年份:
    2022
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant
BRITE Relaunch: Manufacturing Multilayers of Molecularly-Bonded Inorganic Nanointerfaces for Accessing and Tuning Novel Properties
BRITE 重新推出:制造多层分子键合无机纳米界面以获取和调整新特性
  • 批准号:
    2135725
  • 财政年份:
    2021
  • 资助金额:
    $ 37.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了