SAI-P: Optimizing Deployment of Green Stormwater Infrastructure for Maximum Benefit

SAI-P:优化绿色雨水基础设施的部署以获得最大效益

基本信息

  • 批准号:
    2228662
  • 负责人:
  • 金额:
    $ 12.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Strengthening American Infrastructure (SAI) is an NSF Program seeking to stimulate human-centered fundamental and potentially transformative research that strengthens America’s infrastructure. Effective infrastructure provides a strong foundation for socioeconomic vitality and broad quality of life improvement. Strong, reliable, and effective infrastructure spurs private-sector innovation, grows the economy, creates jobs, makes public-sector service provision more efficient, strengthens communities, promotes equal opportunity, protects the natural environment, enhances national security, and fuels American leadership. To achieve these goals requires expertise from across the science and engineering disciplines. SAI focuses on how knowledge of human reasoning and decision-making, governance, and social and cultural processes enables the building and maintenance of effective infrastructure that improves lives and society and builds on advances in technology and engineering.Stormwater runoff is a major source of water pollution and flooding in cities. To help manage these problems, many communities are turning to practices like rain gardens, bioswales, or soil amendments that reduce and treat stormwater runoff by mimicking natural hydrologic processes. These “green infrastructure” practices are cost-effective and can provide multiple social, economic, and health benefits when implemented in strategic locations within a watershed. However, the public land owned by government agencies charged with managing stormwater may not be sufficient to meet watershed targets. Developing effective strategies for engaging residents and incentivizing adoption of green infrastructure on private land is a top priority. This SAI planning project focuses on how municipalities and government agencies can optimally allocate their resources to equitably distribute and maximize the benefits of stormwater management to society.This SAI planning project brings together stakeholders in a major region of the country to define the challenges surrounding green infrastructure implementation. A major goal is to prioritize the social, behavioral, economic, policy, and/or hydrologic research needed to develop more effective and equitable green infrastructure strategies. This project focuses primarily on bringing together a diverse range of stakeholders, including local governments, non-governmental organizations (NGOs) who work with homeowners to install green infrastructure, and basic science researchers. These groups participate in half-day meetings during the project period. Between meetings, additional information is gathered on one or more local areas of interest to guide more focused discussions of potential research directions. To include feedback from stakeholder groups and perspectives beyond the local area, a special session is hosted at a larger regional meeting. The planning activity culminates in a comprehensive research plan that addresses the most pressing challenges in implementing effective and equitable green infrastructure.This award is supported by the Directorate for Social, Behavioral, and Economic (SBE) Sciences and the Directorate for Geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
加强美国基础设施(SAI)是一项NSF计划,旨在刺激以人类为中心的基础性研究和潜在的变革性研究,以加强美国的基础设施。有效的基础设施为社会经济活力和广泛的生活质量改善提供了坚实的基础。强大、可靠和有效的基础设施刺激私营部门创新,增长经济,创造就业机会,提高公共部门服务提供效率,加强社区力量,促进机会均等,保护自然环境,增强国家安全,推动美国的领导地位。要实现这些目标,需要来自科学和工程学科的专业知识。SAI侧重于人类推理和决策、治理以及社会和文化过程的知识如何能够建立和维护有效的基础设施,改善生活和社会,并建立在技术和工程进步的基础上。雨水径流是城市水污染和洪水的主要来源。为了帮助管理这些问题,许多社区正在转向雨水花园、生物沟或土壤改良剂等做法,通过模仿自然水文过程来减少和处理雨水径流。这些“绿色基础设施”做法具有成本效益,当在分水岭内的战略位置实施时,可以提供多种社会、经济和健康效益。然而,负责管理雨水的政府机构拥有的公共土地可能不足以达到分水岭目标。制定有效的战略,吸引居民参与,并鼓励在私人土地上采用绿色基础设施,是当务之急。这个SAI规划项目关注的是市政当局和政府机构如何优化分配他们的资源,以公平地分配和最大化雨水管理对社会的好处。这个SAI规划项目将该国一个主要地区的利益相关者聚集在一起,以确定围绕绿色基础设施实施的挑战。一个主要目标是优先考虑制定更有效和更公平的绿色基础设施战略所需的社会、行为、经济、政策和/或水文研究。该项目主要侧重于将不同的利益攸关方聚集在一起,包括地方政府、与房主合作安装绿色基础设施的非政府组织(NGO)和基础科学研究人员。这些小组在项目期间参加为期半天的会议。在会议间隙,收集关于一个或多个地方感兴趣领域的更多信息,以指导对潜在研究方向的更有针对性的讨论。为了纳入利益攸关方团体的反馈和当地以外的观点,在一个较大的区域会议上主办了一次特别会议。规划活动最终形成了一项全面的研究计划,以应对在实施有效和公平的绿色基础设施方面最紧迫的挑战。该奖项得到了社会、行为和经济(SBE)科学局和地球科学局的支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carolyn Voter其他文献

Carolyn Voter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
  • 批准号:
    2311379
  • 财政年份:
    2024
  • 资助金额:
    $ 12.36万
  • 项目类别:
    Standard Grant
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
  • 批准号:
    24K14913
  • 财政年份:
    2024
  • 资助金额:
    $ 12.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimizing the STEM Teacher Recruitment, Development and Retention Pathway: Aligning STEM and Teaching Identities
优化 STEM 教师的招聘、发展和保留途径:协调 STEM 和教学身份
  • 批准号:
    2345197
  • 财政年份:
    2024
  • 资助金额:
    $ 12.36万
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of Optimizing Regression Testing in Software Development
I-Corps:软件开发中优化回归测试的转化潜力
  • 批准号:
    2405355
  • 财政年份:
    2024
  • 资助金额:
    $ 12.36万
  • 项目类别:
    Standard Grant
CAREER: Characterizing and Optimizing Control in Neural Interfaces
职业:表征和优化神经接口控制
  • 批准号:
    2338662
  • 财政年份:
    2024
  • 资助金额:
    $ 12.36万
  • 项目类别:
    Standard Grant
SBIR Phase I: Optimizing Composition of Novel Molten Alkali Metal Borates for Carbon Dioxide Capture
SBIR 第一阶段:优化用于二氧化碳捕获的新型熔融碱金属硼酸盐的成分
  • 批准号:
    2332658
  • 财政年份:
    2024
  • 资助金额:
    $ 12.36万
  • 项目类别:
    Standard Grant
SCC-PG: Internet of Waste: A Low-Cost Geospatial Sensor Network for Optimizing Solid Waste Management and Fostering Resident's Recycling Effectiveness Through Evidential Education
SCC-PG:废物互联网:通过循证教育优化固体废物管理并提高居民回收效率的低成本地理空间传感器网络
  • 批准号:
    2341996
  • 财政年份:
    2024
  • 资助金额:
    $ 12.36万
  • 项目类别:
    Standard Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    $ 12.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SCC-PG: Optimizing sociotechnical interventions for healthcare access using community sensing
SCC-PG:利用社区感知优化医疗保健获取的社会技术干预措施
  • 批准号:
    2334724
  • 财政年份:
    2024
  • 资助金额:
    $ 12.36万
  • 项目类别:
    Standard Grant
DMREF: Optimizing Problem formulation for prinTable refractory alloys via Integrated MAterials and processing co-design (OPTIMA)
DMREF:通过集成材料和加工协同设计 (OPTIMA) 优化可打印耐火合金的问题表述
  • 批准号:
    2323611
  • 财政年份:
    2024
  • 资助金额:
    $ 12.36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了