CAREER: Characterizing and Optimizing Control in Neural Interfaces
职业:表征和优化神经接口控制
基本信息
- 批准号:2338662
- 负责人:
- 金额:$ 89.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2029-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development Program (CAREER) award supports research that aims to expand our understanding of human-technology interaction through Brain-Computer Interfaces (BCI). This award will support foundational research into how the nervous system responds to the use of neural interfaces, paving the way for the creation of advanced computer algorithms that can adapt to the user's nervous system. As BCI create intricate connections between the nervous system and technology by measuring biological signals from individuals and translating them into commands for devices, and they hold great potential for treating neurological disorders. Neural interface technologies have the potential to revolutionize the field of rehabilitation by allowing the nervous system to control novel devices that can offer new hope and possibilities for regaining control and independence despite physical limitations. However, developing computer algorithms that can effectively interact with the human nervous system remains a challenge. The interdisciplinary nature of this research will draw on the PI’s expertise in neuroscience, control theory, and neural engineering. Additionally, this award will support the creation of new outreach programs and integrate the findings into engineering courses while encouraging participation from underrepresented groups in engineering.Closed-loop interactions between a user and the device in a neural interface open opportunities to leverage nervous system plasticity to improve performance and shape user behavior for rehabilitation. Achieving this goal requires scientific insights into how nervous systems interact with devices and new computational frameworks to jointly consider the device, the nervous system, and their interactions. This project will identify principles of how users learn to control sensorimotor neural interfaces and use these insights to improve computational methods for closed-loop neural interfaces. The PI's team will perform experiments using two types of neural interfaces—muscle interfaces in humans and brain interfaces in non-human primates to understand computations performed by the nervous system when learning to control an interface and whether properties of the device influence these computations. The PI will quantify neural computations using a control theoretic framework that can measure users' predictive models of the device. Insights from these experiments will be used to improve user models, which will, in turn, be used to design new interface algorithms that will be experimentally validated against additional muscle interface experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展计划(Career)奖支持旨在通过脑机接口(BCI)扩大我们对人-技术交互的理解的研究。该奖项将支持神经系统如何对神经接口的使用做出反应的基础研究,为创造能够适应用户神经系统的先进计算机算法铺平道路。由于脑机接口通过测量来自个人的生物信号并将其转化为设备的命令,在神经系统和技术之间建立了错综复杂的联系,因此它们在治疗神经疾病方面具有巨大的潜力。神经接口技术有可能给康复领域带来革命性的变化,因为它允许神经系统控制新的设备,这些设备可以为重新获得控制和独立提供新的希望和可能性,而不受身体限制。然而,开发能够与人类神经系统有效互动的计算机算法仍然是一个挑战。这项研究的跨学科性质将借鉴PI在神经科学、控制理论和神经工程方面的专业知识。此外,该奖项将支持创建新的外展计划,并将研究结果整合到工程课程中,同时鼓励未被充分代表的群体参与工程。用户与设备在神经接口中的闭合环路交互提供了利用神经系统可塑性来提高性能和塑造用户康复行为的机会。实现这一目标需要对神经系统如何与设备和新的计算框架相互作用的科学见解,以共同考虑设备、神经系统及其相互作用。这个项目将确定用户如何学习控制感觉运动神经接口的原理,并利用这些见解来改进闭环神经接口的计算方法。PI的团队将使用两种类型的神经接口-人类的肌肉接口和非人类灵长类动物的大脑接口-进行实验,以了解神经系统在学习控制接口时执行的计算,以及设备的属性是否影响这些计算。PI将使用控制理论框架量化神经计算,该框架可以测量用户对设备的预测模型。这些实验的洞察力将被用于改进用户模型,进而将被用于设计新的界面算法,这些算法将通过实验验证其他肌肉界面实验。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Orsborn其他文献
NSF DARE—Transforming modeling in neurorehabilitation: Four threads for catalyzing progress
- DOI:
10.1186/s12984-024-01324-x - 发表时间:
2024-04-03 - 期刊:
- 影响因子:5.200
- 作者:
Francisco J. Valero-Cuevas;James Finley;Amy Orsborn;Natalie Fung;Jennifer L. Hicks;He (Helen) Huang;David Reinkensmeyer;Nicolas Schweighofer;Douglas Weber;Katherine M. Steele - 通讯作者:
Katherine M. Steele
Amy Orsborn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Orsborn', 18)}}的其他基金
EAGER: Bidirectional Body-Brain-Machine Interface (B3MI) for Control of Complex Dynamics
EAGER:用于控制复杂动力学的双向体脑机接口 (B3MI)
- 批准号:
2124608 - 财政年份:2022
- 资助金额:
$ 89.93万 - 项目类别:
Standard Grant
相似海外基金
RUI: characterizing and optimizing extensions of LCDM
RUI:表征和优化 LCDM 的扩展
- 批准号:
2308173 - 财政年份:2023
- 资助金额:
$ 89.93万 - 项目类别:
Standard Grant
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10579947 - 财政年份:2022
- 资助金额:
$ 89.93万 - 项目类别:
Characterizing and optimizing bondline reactions during electric resistance welding of advanced high strength steels
先进高强度钢电阻焊过程中胶层反应的表征和优化
- 批准号:
572129-2022 - 财政年份:2022
- 资助金额:
$ 89.93万 - 项目类别:
Alliance Grants
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10363601 - 财政年份:2022
- 资助金额:
$ 89.93万 - 项目类别:
Characterizing and optimizing IgE and IgG4 microarray peptide assays for Ara h 2
表征和优化 Ara h 2 的 IgE 和 IgG4 微阵列肽测定
- 批准号:
10289505 - 财政年份:2021
- 资助金额:
$ 89.93万 - 项目类别:
Characterizing and optimizing IgE and IgG4 microarray peptide assays for Ara h 2
表征和优化 Ara h 2 的 IgE 和 IgG4 微阵列肽测定
- 批准号:
10447170 - 财政年份:2021
- 资助金额:
$ 89.93万 - 项目类别:
SHF: Small: Characterizing and Optimizing 3D NAND Flash
SHF:小型:表征和优化 3D NAND 闪存
- 批准号:
1908793 - 财政年份:2019
- 资助金额:
$ 89.93万 - 项目类别:
Standard Grant
Characterizing the biologically available phosphorus fraction of fish farm wastewater and optimizing systems for its removal
表征养鱼场废水中生物可利用的磷部分并优化其去除系统
- 批准号:
535768-2019 - 财政年份:2019
- 资助金额:
$ 89.93万 - 项目类别:
Applied Research and Development Grants - Level 1
Characterizing and Optimizing the Skilled Nursing Facility to Home Transition
表征和优化熟练护理设施到家庭的过渡
- 批准号:
10465050 - 财政年份:2018
- 资助金额:
$ 89.93万 - 项目类别:
Characterizing and Optimizing the Skilled Nursing Facility to Home Transition
表征和优化熟练护理设施到家庭的过渡
- 批准号:
10213604 - 财政年份:2018
- 资助金额:
$ 89.93万 - 项目类别: