Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras

量子对称会议:张量范畴、拓扑量子场论和顶点代数

基本信息

  • 批准号:
    2228888
  • 负责人:
  • 金额:
    $ 3.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Symmetry is all around us and, as such, forms a crucial tool to understand the natural world. Mathematicians have studied symmetries for hundreds of years and these classical results have guided almost every area of applied science. In the microscopic world, however, it is the counterintuitive rules of quantum science that must be obeyed. Scientists studying these phenomena therefore turn to a newly created field of mathematics known as quantum symmetry. While new, this field has already led to many breakthroughs and has played a crucial role in work that has been awarded several recent Fields medals and Nobel prizes. This project will bring together leading international experts and early career researchers from mathematics and physics to share techniques and advances in quantum symmetry. It will take place at the Centre de Recherches Mathématiques (CRM), Montreal, Canada, from October 10 to November 4, 2022, and will feature three weeks of lectures courses and a one-week international conference. For more information, see the conference website: http://www.crm.umontreal.ca/2022/Quantum22/index_e.phpThe topics of this event are important both in mathematics and physics. In mathematics, the latest developments in the representation theory of quantum groups at roots of unity bring new results to this well-developed subject. Related developments in topological quantum field theory (TQFT) and vertex algebras (VA) clarify the structure of "non-semisimple" TQFT and VA. Many recent conferences in these areas of research have focused on parts of these connections, but this conference will be unique in the sense that it will feature talks on each of the following topics: conformal field theories, vertex operator algebras, Hopf algebras and fusion categories, tensor categories in positive characteristic, constructions of modular categories, cohomological aspects of tensor categories, and more. These activities will connect communities working on different sides of the rich research area that is quantum symmetry. Other important aims include the training of the next generation of mathematical scientists and creating opportunities to meet with other researchers working on related problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称性就在我们身边,因此,它是理解自然世界的重要工具。数学家们已经研究对称性几百年了,这些经典的结果几乎指导了应用科学的每一个领域。然而,在微观世界中,必须遵守的是量子科学的反直觉规则。因此,研究这些现象的科学家们转向了一个新创建的数学领域,称为量子对称性。虽然是新的,但这个领域已经取得了许多突破,并在最近获得几项菲尔兹奖和诺贝尔奖的工作中发挥了关键作用。该项目将汇集来自数学和物理的国际领先专家和早期职业研究人员,分享量子对称性的技术和进展。它将于2022年10月10日至11月4日在加拿大蒙特利尔的Centre de Recherches Mathématiques(CRM)举行,并将举办为期三周的讲座课程和为期一周的国际会议。欲了解更多信息,请参阅会议网站:http://www.crm.umontreal.ca/2022/Quantum22/index_e.phpThe本次活动的主题是重要的数学和物理。在数学中,量子群在单位根上的表示理论的最新发展为这个发展良好的学科带来了新的结果。拓扑量子场论(TQFT)和顶点代数(VA)的相关发展阐明了“非半单”TQFT和VA的结构。最近在这些研究领域的许多会议都集中在这些连接的一部分,但这次会议将是独一无二的,因为它将在以下每个主题上进行专题演讲:共形场论,顶点算子代数,霍普夫代数和融合范畴,正特征张量范畴,模范畴的构造,张量范畴的上同调方面等等。 这些活动将连接在量子对称性这一丰富研究领域的不同方面工作的社区。其他重要的目标包括培养下一代数学科学家,并创造机会与其他研究人员在相关问题上的工作。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Plavnik其他文献

Julia Plavnik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Plavnik', 18)}}的其他基金

CAREER: Cohomology, classification, and constructions of tensor categories
职业:张量类别的上同调、分类和构造
  • 批准号:
    2146392
  • 财政年份:
    2022
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Continuing Grant
Quantum Symmetries: tensor categories, braids, and Hopf algebras
量子对称性:张量范畴、辫子和 Hopf 代数
  • 批准号:
    1917319
  • 财政年份:
    2018
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Standard Grant
Quantum Symmetries: tensor categories, braids, and Hopf algebras
量子对称性:张量范畴、辫子和 Hopf 代数
  • 批准号:
    1802503
  • 财政年份:
    2018
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
  • 批准号:
    2310279
  • 财政年份:
    2023
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Continuing Grant
Scattering in Quantum Gravity: Symmetries and Holography
量子引力中的散射:对称性和全息术
  • 批准号:
    2310633
  • 财政年份:
    2023
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Standard Grant
Generalized Symmetries in Quantum Field Theory and Quantum Gravity
量子场论和量子引力中的广义对称性
  • 批准号:
    EP/X028291/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Research Grant
New Symmetries in Quantum Field Theory
量子场论中的新对称性
  • 批准号:
    2780815
  • 财政年份:
    2023
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Studentship
ExpandQISE: Track 1: Exceptional entanglement transition and supersensitive quantum sensing empowered by anti-Hermiticity and symmetries
ExpandQISE:轨道 1:反厄米性和对称性支持的出色纠缠跃迁和超灵敏量子传感
  • 批准号:
    2329027
  • 财政年份:
    2023
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Standard Grant
RUI: Homological Techniques in Quantum Symmetries
RUI:量子对称性中的同调技术
  • 批准号:
    2201146
  • 财政年份:
    2022
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Interagency Agreement
Quantum Symmetries: Subfactors, Topological Phases, and Higher Categories
量子对称性:子因子、拓扑相和更高类别
  • 批准号:
    2154389
  • 财政年份:
    2022
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Standard Grant
Understanding quantum systems with higher symmetries
理解具有更高对称性的量子系统
  • 批准号:
    RGPIN-2017-05371
  • 财政年份:
    2022
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Discovery Grants Program - Individual
C*-dynamics, quantum equilibrium, and symmetries
C*-动力学、量子平衡和对称性
  • 批准号:
    RGPIN-2017-04052
  • 财政年份:
    2022
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
  • 批准号:
    RGPIN-2020-07070
  • 财政年份:
    2022
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了