Quantum Symmetries: tensor categories, braids, and Hopf algebras

量子对称性:张量范畴、辫子和 Hopf 代数

基本信息

  • 批准号:
    1802503
  • 负责人:
  • 金额:
    $ 11.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

This award supports research in an area of mathematics that can be used to model symmetry at the quantum level. Symmetries are present in our daily life and they are encoded mathematically by objects called groups. In recent decades, a lot of attention has been given to quantum phenomena. In this context, quantum symmetries appear, which are best described by group-like objects called tensor categories. Moreover, tensor categories are the language of quantum computation and topological phases of matter. Researchers would like to classify modular categories (a distinguished class of tensor categories) because of their applications in condensed matter physics and quantum computing. In particular, unitary modular categories are algebraic models of anyons, which have applications in topological quantum computing. This model also has the advantage of being a fault-tolerance model of anyons, since small perturbations will not change the physical properties of the quantum system.Tensor categories can be thought of as the categorical version of rings. This notion includes representation of groups, Lie algebras, and Hopf algebras. The project will consist of three main programs: classification, construction, and study of homological properties of tensor categories. One of the aims is to advance on the classification of low-rank premodular categories and supermodular categories. Another goal of this project is to understand how the cohomology behaves under standard constructions and use these results to get new examples of Hopf algebras and categories satisfying certain properties, such as the finite generation of cohomology for Hopf algebras and tensor categories, proposed by Etingof and Ostrik. The investigator will explore generalizations of the support variety theory. These are geometrical objects that measure projectivity, in the context of finite tensor categories. The last goal of the project is to search for new constructions of finite tensor categories, using Hopf algebras, and modular tensor categories, via gauging the symmetry with a focus on permutation actions on Deligne products of a given modular category.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持在数学领域的研究,可用于在量子水平上模拟对称性。对称性存在于我们的日常生活中,它们通过称为群的对象进行数学编码。近几十年来,人们对量子现象给予了极大的关注。在这种背景下,量子对称性出现了,最好用称为张量范畴的类群对象来描述。此外,张量范畴是量子计算和物质拓扑相的语言。研究人员希望对模范畴(张量范畴的一个杰出类别)进行分类,因为它们在凝聚态物理和量子计算中的应用。特别地,酉模范畴是任意子的代数模型,其在拓扑量子计算中有应用。这个模型还有一个优点,就是它是任意子的容错模型,因为小的扰动不会改变量子系统的物理性质。张量范畴可以被认为是环的范畴版本。这个概念包括群的表示、李代数和霍普夫代数。该项目将包括三个主要项目:分类,建设和研究张量范畴的同调性质。目的之一是推进低秩前模块范畴和超模块范畴的分类。该项目的另一个目标是了解上同调在标准构造下的行为,并使用这些结果来获得满足某些性质的霍普夫代数和范畴的新例子,例如Etingof提出的霍普夫代数和张量范畴的上同调的有限生成和Ostrik。研究者将探索支持多样性理论的推广。这些是在有限张量范畴的上下文中测量投射性的几何对象。该项目的最后一个目标是通过测量对称性,并重点关注特定模范畴的Deligne积上的置换作用,利用Hopf代数和模张量范畴来寻找有限张量范畴的新构造。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cohomology of finite tensor categories: Duality and Drinfeld centers
有限张量类别的上同调:对偶性和德林菲尔德中心
Braided Zesting and Its Applications
  • DOI:
    10.1007/s00220-021-04002-4
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Colleen Delaney;César Galindo;J. Plavnik;E. Rowell;Qing Zhang
  • 通讯作者:
    Colleen Delaney;César Galindo;J. Plavnik;E. Rowell;Qing Zhang
Support varieties for finite tensor categories: Complexity, realization, and connectedness
有限张量类别的支持种类:复杂性、实现和连通性
  • DOI:
    10.1016/j.jpaa.2021.106705
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Bergh, Petter Andreas;Plavnik, Julia Yael;Witherspoon, Sarah
  • 通讯作者:
    Witherspoon, Sarah
On classification of super-modular categories of rank 8
  • DOI:
    10.1142/s021949882140017x
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    P. Bruillard;J. Plavnik;E. Rowell;Qing Zhang
  • 通讯作者:
    P. Bruillard;J. Plavnik;E. Rowell;Qing Zhang
Extension Theory for Braided-Enriched Fusion Categories
  • DOI:
    10.1093/imrn/rnab133
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Corey Jones;S. Morrison;David Penneys;J. Plavnik
  • 通讯作者:
    Corey Jones;S. Morrison;David Penneys;J. Plavnik
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Plavnik其他文献

Julia Plavnik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Plavnik', 18)}}的其他基金

CAREER: Cohomology, classification, and constructions of tensor categories
职业:张量类别的上同调、分类和构造
  • 批准号:
    2146392
  • 财政年份:
    2022
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Continuing Grant
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
  • 批准号:
    2228888
  • 财政年份:
    2022
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
Quantum Symmetries: tensor categories, braids, and Hopf algebras
量子对称性:张量范畴、辫子和 Hopf 代数
  • 批准号:
    1917319
  • 财政年份:
    2018
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant

相似海外基金

REU Site: Research in Symmetries at the University of Kentucky
REU 网站:肯塔基大学对称性研究
  • 批准号:
    2349261
  • 财政年份:
    2024
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Continuing Grant
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
  • 批准号:
    DP240101772
  • 财政年份:
    2024
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Discovery Projects
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
  • 批准号:
    EP/Y006712/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Fellowship
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
  • 批准号:
    2339682
  • 财政年份:
    2024
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Continuing Grant
Characterization of Systematic Effects in Ultracold Neutron Tests of Fundamental Symmetries
基本对称性超冷中子测试中系统效应的表征
  • 批准号:
    2310015
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
  • 批准号:
    2310279
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Continuing Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
  • 批准号:
    2247202
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Fellowship
CAREER: Low-energy Nuclear Physics and Fundamental Symmetries with Neutrons and Cryogenic Technologies
职业:低能核物理以及中子和低温技术的基本对称性
  • 批准号:
    2232117
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Continuing Grant
Polymorphism in the symmetries of gastric pouch arrangements in the sea anemone Diadumene lineata
海葵胃袋排列对称性的多态性
  • 批准号:
    22KJ3132
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了