RII Track-4: NSF: Understanding Microstructure Evolution in Stimuli-Responsive Yield-Stress Fluid-Assisted 3D Printing: Linking Microstructures to Macroscale Rheological Properties

RII Track-4:NSF:了解刺激响应屈服应力流体辅助 3D 打印中的微观结构演化:将微观结构与宏观流变特性联系起来

基本信息

项目摘要

Recently, an innovative three-dimensional (3D) printing method has been proposed and developed to fabricate parts with arbitrary architectures. In this method, a 3D structure is freeform printed within a unique liquid support bath with desired properties that are controllable by either printing conditions or working environments. Although this method presents a better printing capability than many current 3D printing approaches, the working mechanisms of unique support bath materials are still elusive, which has hampered the further development of this 3D printing method. The project aims to investigate the microstructure changes of a representative thermosensitive support bath material at different temperatures and printing conditions. The achievements of this project can guide the design of more support baths as well as fundamentally explain the working mechanisms of printing within a support bath. The proposed research will have a profound societal impact by accelerating the development of 3D printing technology to enhance the manufacturing capability in the United States. In addition, the project will promote the education of students from K-12 to graduate in the State of Nevada through diverse activities, including hands-on K-12 lab activities, research module-involved curricula, and mentorship of students from underrepresented backgrounds at the University of Nevada, Reno. This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant professor and training for a graduate student at the University of Nevada Reno (UNR). Stimuli-responsive yield-stress fluids, developed on the basis of regular yield-stress materials, can change rheological properties/behaviors by responding to both applied shear stress and external stimuli. This dual-responsiveness makes stimuli-responsive yield-stress fluids promising for support bath-assisted 3D printing because a support bath material can be easily added during printing and removed after printing by applying external stimuli to achieve desired rheological properties, making it technically feasible to print 3D structures with arbitrary architectures. However, the interrelationships between microstructure evolution and macroscale rheology change of stimuli-responsive yield-stress fluids have so far remained elusive. Thus, the overarching goal of this project is to fundamentally understand the microstructure evolution of a representative stimuli-responsive yield-stress fluid—Pluronic F127-nanoclay nanocomposite—under different stress and temperature conditions through nanoscale material characterization, mathematical modeling, molecular dynamics simulation, and rheological testing. To achieve this goal, two integrated research objectives will be pursued: (1) characterize/establish static microstructure models in Pluronic F127-nanoclay nanocomposite via nanoscale material characterization techniques and mathematical modeling; and (2) explore temperature- and stress-induced microstructure evolutions via molecular dynamics simulation and rheological property testing. Completing the objectives will establish a paradigm for linking microstructures to macroscale rheological properties of support bath materials, promoting the development of more advanced stimuli-responsive yield-stress fluids for 3D printing applications in the future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,提出并发展了一种创新的三维打印方法来制造任意结构的零件。在这种方法中,3D结构在独特的液体支撑浴中自由打印,具有可通过打印条件或工作环境控制的所需性能。虽然该方法比目前许多3D打印方法具有更好的打印能力,但独特的支撑浴材料的工作机制仍然难以理解,这阻碍了该3D打印方法的进一步发展。本项目旨在研究一种具有代表性的热敏支撑浴材料在不同温度和打印条件下的微观结构变化。本项目的研究成果可以指导更多支撑槽的设计,并从根本上解释支撑槽内打印的工作机理。拟议的研究将通过加速3D打印技术的发展来提高美国的制造能力,从而产生深远的社会影响。此外,该项目将通过各种活动促进内华达州从K-12到毕业的学生的教育,包括动手K-12实验室活动,研究模块参与的课程,以及内华达大学里诺分校来自代表性不足背景的学生的指导。这项研究基础设施改善轨道4 EPSCoR研究研究员(RII轨道4)项目将为内华达大学里诺分校(UNR)的助理教授提供奖学金,并为研究生提供培训。刺激响应屈服应力流体是在常规屈服应力材料的基础上开发的,可以通过响应施加的剪切应力和外部刺激来改变流变特性/行为。这种双重响应性使得刺激响应屈服应力流体有望用于支撑浴辅助3D打印,因为支撑浴材料可以在打印过程中轻松添加,并在打印后通过施加外部刺激来实现所需的流变性能,从而在技术上可行地打印任意结构的3D结构。然而,迄今为止,屈服应力流体的微观结构演化与宏观流变变化之间的相互关系仍然是难以捉摸的。因此,该项目的总体目标是通过纳米材料表征、数学建模、分子动力学模拟和流变学测试,从根本上了解具有代表性的刺激响应屈服应力流体pluronic f127纳米粘土纳米复合材料在不同应力和温度条件下的微观结构演变。为了实现这一目标,将追求两个综合研究目标:(1)通过纳米级材料表征技术和数学建模来表征/建立Pluronic f127 -纳米粘土纳米复合材料的静态微观结构模型;(2)通过分子动力学模拟和流变性能测试,探索温度和应力诱导下的微观结构演变。完成这些目标将为支撑槽材料的微观结构与宏观流变特性之间的联系建立一个范例,促进未来3D打印应用中更先进的刺激响应屈服应力流体的开发。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yifei Jin其他文献

Destabilization of low-frequency modes (LFMs) driven by a thermal pressure gradient in EAST plasmas with qmin ⩽ 2
  • DOI:
    10.1088/1741-4326/ac9292
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Ming Xu;Ruirui Ma;Liqing Xu;Yingying Li;Hailin Zhao;Wei Chen;Shouxin Wang;Guoqiang Li;Guoqiang Zhong;Fudi Wang;Yifei Jin;Juan Huang;Qing Zang;Haiqing Liu;Liqun Hu;Xianzu Gong;Guosheng Xu;Jiansheng Hu;Baonian Wan;the EAST Team
  • 通讯作者:
    the EAST Team
Dual active sites over Cu-ZnO-ZrOsub2/sub catalysts for carbon dioxide hydrogenation to methanol
铜-氧化锌-二氧化锆双活性位催化剂用于二氧化碳加氢制甲醇
  • DOI:
    10.1016/j.jes.2022.10.002
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Xiucheng Sun;Yifei Jin;Zaizhe Cheng;Guojun Lan;Xiaolong Wang;Yiyang Qiu;Yanjiang Wang;Huazhang Liu;Ying Li
  • 通讯作者:
    Ying Li
Three-Dimensional Printing in Stimuli-Responsive Yield-Stress Fluid with an Interactive Dual Microstructure.
具有交互式双微结构的刺激响应屈服应力流体中的三维打印。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    W. Hua;Kellen Mitchell;L. Kariyawasam;Changwoo Do;Jihua Chen;Lily Raymond;Naima Valentin;R. Coulter;Ying Yang;Yifei Jin
  • 通讯作者:
    Yifei Jin
3D Printing of Conical Centrifuge System for Mineral Particle Separation
用于矿物颗粒分离的锥形离心机系统的 3D 打印
  • DOI:
    10.1016/j.seppur.2022.122567
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Kellen Mitchell;Sachin Urade;Andrew Kershaw;P. Chu;Yifei Jin
  • 通讯作者:
    Yifei Jin
Evaluation of bioink printability for bioprinting applications
评估生物打印应用中的生物墨水可打印性
  • DOI:
    10.1063/1.5053979
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Zhengyi Zhang;Yifei Jin;Jun Yin;Changxue Xu;Ruitong Xiong;Kyle Christensen;Bradley R Ringeisen;Douglas B Chrisey;Yong Huang
  • 通讯作者:
    Yong Huang

Yifei Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了