I-Corps: A Trustworthy, Interactive, Up to Date COVID-19 Knowledge Graph

I-Corps:值得信赖、互动、最新的 COVID-19 知识图谱

基本信息

  • 批准号:
    2229256
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of an interactive, easy to use knowledge graph populated with trustworthy information from the latest published medical findings on COVID-19. Easy access to the vetted medical findings may motivate people to make informed decisions, which is expected to lead to better health practices. The solution may save many lives in the US and worldwide. Additionally, this knowledge graph can extend to other diseases and create accessible, easy to use, trustworthy medical practices for aging, cancer, cardiovascular diseases, diabetes, etc.This I-Corps project is based on the development of an interactive Knowledge Graph (KG) populated with trustworthy information from the latest published medical findings on COVID-19. Currently existing, socially maintained KGs lack COVID-19 medical findings and scalable mechanisms to keep the graphs up to date. The proposed solution includes the design and evaluation of new scalable algorithms and abstractions. The technology incorporates COVID symptoms and possible vaccine side-effects in non-relational tables having different structures and metadata. The team has constructed the initial “skeleton” of the graph and proposes to automatically process tables from recent publications in order to enrich the KG. While most medical tables are complex, exhibiting hierarchical vertical/horizontal metadata, this technology addresses the fundamental challenges by providing a novel, scalable hybrid graph, incorporating new abstractions to handle complex tabular data, developing a multi-layer deep-/machine-Learning network with new 2D tabular embedding layer, and designing a new search engine for graph and medical tables.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
I-Corps项目的更广泛影响/商业潜力在于开发一个易于使用的交互式知识图谱,其中包含最新公布的COVID-19医学发现的可靠信息。容易获得经过审查的医学发现可能会促使人们做出明智的决定,预计这将导致更好的卫生做法。这一解决方案可能会挽救美国乃至全世界许多人的生命。此外,该知识图谱可以扩展到其他疾病,并为衰老、癌症、心血管疾病、糖尿病等创建可访问的、易于使用的、值得信赖的医疗实践。I-Corps项目基于交互式知识图谱(KG)的开发,其中填充了最新发表的关于COVID-19的医学发现的可靠信息。目前,社会维护的现有KGs缺乏COVID-19医学发现和可扩展机制来保持图表的最新状态。提出的解决方案包括设计和评估新的可扩展算法和抽象。该技术在具有不同结构和元数据的非关系表中包含了COVID症状和可能的疫苗副作用。该团队已经构建了图形的初始“骨架”,并建议自动处理来自最近出版物的表格,以丰富KG。虽然大多数医疗表格都是复杂的,表现出分层的垂直/水平元数据,但该技术通过提供一种新颖的、可扩展的混合图,结合新的抽象来处理复杂的表格数据,开发具有新的二维表格嵌入层的多层深度/机器学习网络,以及为图表和医疗表格设计一个新的搜索引擎,解决了基本的挑战。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
COVIDKG.ORG - a Web-scale COVID-19 Interactive, Trustworthy Knowledge Graph, Constructed and Interrogated for Bias using Deep-Learning
  • DOI:
    10.48786/edbt.2023.63
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhimesh Kandibedala;A. Pyayt;Nick Piraino;Chris Caballero;M. Gubanov
  • 通讯作者:
    Bhimesh Kandibedala;A. Pyayt;Nick Piraino;Chris Caballero;M. Gubanov
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Gubanov其他文献

Michael Gubanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Gubanov', 18)}}的其他基金

PFI-TT: A Hybrid Scalable Data Management System Providing Deep Access to the Scientific Knowledge in Data Science
PFI-TT:混合可扩展数据管理系统,提供对数据科学中科学知识的深入访问
  • 批准号:
    2345794
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似海外基金

Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
  • 批准号:
    DE240101089
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
  • 批准号:
    2404952
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
REU Site: Embracing Blockchain for a Secure and Trustworthy Tomorrow
REU 网站:拥抱区块链,打造安全可信的明天
  • 批准号:
    2349042
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
  • 批准号:
    24K20834
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Secure and Trustworthy Intent-Based Networking
职业:安全且值得信赖的基于意图的网络
  • 批准号:
    2339882
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
  • 批准号:
    2404950
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
  • 批准号:
    2404951
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Set-Based Dynamic Modeling and Control for Trustworthy Energy Management Systems
职业:可信赖的能源管理系统的基于集的动态建模和控制
  • 批准号:
    2336007
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411153
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了