FMSG: Bio: Rapid Bio-Printing of Hybrid Piezoelectric and Magnetostrictive Platforms for Tissue Engineering
FMSG:生物:用于组织工程的混合压电和磁致伸缩平台的快速生物打印
基本信息
- 批准号:2229279
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tissue engineering is a biomedical engineering process that usually involves combining cells, biomolecules, scaffolds, and biologically interactive materials to maintain, restore, or improve tissues or organs. However, these manually made functional tissues have only limited use in human patients (e.g., artificial skin or cartilage). The challenges include innovating cost-efficient tooling engineering, creating materials with suitable biochemical and physicochemical factors, and sustainable platforms delivering in-situ diagnosis for directing the disease healing strategies. This Future Manufacturing Seed Grant (FMSG)-BioManufacturing project supports fundamental research for developing a new 3D printing technology to overcome some of these difficulties. For example, the newly developed printer can print multifunctional implants and scaffolds with high throughput and resolution, avoiding tedious tooling engineering. In addition, the newly invented biocompatible composites will also bring opportunities for various biomedical applications, such as tissue regeneration, neurotrauma treatment, and cancer curing. This project unites researchers with diverse expertise, including 3D printing, polymer science, nanoparticle engineering, and biomedical engineering. These investigators will also conduct STEM outreach at all levels, from K-12 public education to graduate course development. Significantly, the investigators will develop education-oriented TikTok/YouTube content to expose the most updated printing techniques to local and national K-12 students.Though 3D printing has been utilized to print piezoelectric or ferromagnetic composites separately, some bottlenecks remain. For example, conventionally 3D printed multiferroic magnetoelectric (ME) composites for biomedical uses have poor printability and limited efficiency in manufacturing fine features. This FMSG project aims to develop a new printing technology, named Multi-Scale and Multi-Material Continuous Liquid Interface Printing (MM-CLIP), by integrating scanning-projection and microfluidic flow control strategies. The MM-CLIP technology can enable scalable manufacturing of functional devices with increasingly small features and multiple materials, which have been the main challenge for the 3D printing field. With the MM-CLIP, multiferroic ME composites can be printed into hybrid piezoelectric and magnetostrictive platforms, i.e., multifunctional implants or tissue scaffolds, which can generate electrical signals from externally controlled magnetic fields that rarely attenuate in biosystems. An additional thrust is the multiphysics modeling framework for elucidating the ME coupling efficiencies of the printable composites and, thus, predicting and precisely controlling the electrical stimulation. In parallel, the project will systematically explore ME-induced electrical stimulation's effects on cell proliferation and correlates it to cell differentiation and growth factors. The iteration within the proof-of-concept studies will lead to optimal scaffold performance, and biomedical application is the ultimate goal of the multiferroic ME platforms. The research outcomes will facilitate the research on novel composites for application in regenerative medicine and multi-material bioprinting for the direct realization of functional implants.This Future Manufacturing award was supported by the Division of Civil, Mechanical, and Manufacturing Innovation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
组织工程是一种生物医学工程过程,通常涉及结合细胞,生物分子,支架和生物相互作用材料来维持,恢复或改善组织或器官。然而,这些人工制造的功能组织在人类患者中仅具有有限的用途(例如,人造皮肤或软骨)。这些挑战包括创新具有成本效益的工具工程,创造具有合适的生物化学和物理化学因素的材料,以及提供原位诊断以指导疾病治疗策略的可持续平台。这个未来制造种子基金(FMSG)-生物制造项目支持基础研究,以开发新的3D打印技术,克服其中的一些困难。例如,新开发的打印机可以以高吞吐量和分辨率打印多功能植入物和支架,避免繁琐的工具工程。此外,新发明的生物相容性复合材料也将为各种生物医学应用带来机会,如组织再生,神经创伤治疗和癌症治疗。该项目汇集了具有不同专业知识的研究人员,包括3D打印,聚合物科学,纳米粒子工程和生物医学工程。这些调查人员还将在各级开展STEM推广活动,从K-12公共教育到研究生课程开发。值得注意的是,研究人员将开发面向教育的TikTok/YouTube内容,向当地和全国的K-12学生展示最新的打印技术。尽管3D打印已被用于分别打印压电或铁磁复合材料,但仍存在一些瓶颈。例如,用于生物医学用途的传统3D打印多铁性磁电(ME)复合材料的可打印性较差,并且制造精细特征的效率有限。该FMSG项目旨在开发一种新的打印技术,称为多尺度和多材料连续液体界面打印(MM-CLIP),通过集成扫描投影和微流体流动控制策略。MM-CLIP技术可以实现具有越来越小的特征和多种材料的功能设备的可扩展制造,这一直是3D打印领域的主要挑战。利用MM-CLIP,多铁性ME复合材料可以被打印成混合压电和磁致伸缩平台,即,多功能植入物或组织支架,其可以从外部控制的磁场产生电信号,该磁场在生物系统中很少衰减。另一个推力是多物理场建模框架,用于阐明可印刷复合材料的ME耦合效率,从而预测和精确控制电刺激。同时,该项目将系统地探索ME诱导的电刺激对细胞增殖的影响,并将其与细胞分化和生长因子相关联。概念验证研究中的迭代将导致最佳的支架性能,生物医学应用是多铁性ME平台的最终目标。该研究成果将促进新型复合材料在再生医学和多材料生物打印中的应用研究,以直接实现功能性植入物。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiangfan Chen其他文献
Current pharmacological developments in 2,3,4', 5-tetrahydroxystilbene 2-O-beta-D-glucoside (TSG)
- DOI:
10.1016/j.ejphar.2017.05.037 - 发表时间:
2017 - 期刊:
- 影响因子:
- 作者:
Jingjing Wu;Wenfeng Hu;Yu Gong;Peng Wang;Lijuan Tong;Xiangfan Chen;Zhuo Chen;Xiaole Xu;Wenjuan Yao;Wei Zhang;Chao Huang - 通讯作者:
Chao Huang
Mediating role of loneliness and emotional disturbance in the association between childhood trauma and occupational burnout among nurses: a cross-sectional study
孤独和情绪困扰在护士童年创伤和职业倦怠之间的中介作用:一项横断面研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.7
- 作者:
Jing Hu;M. Zhai;Donghui Fu;Zhizhou Duan;Xiangfan Chen - 通讯作者:
Xiangfan Chen
Theoretical and experimental manipulation of plasmon-polariton bandgaps at infrared frequencies in indium-tin-oxide nanorod arrays
氧化铟锡纳米棒阵列中红外频率等离激元极化带隙的理论和实验操纵
- DOI:
10.1109/ipcon.2016.7831263 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Xiangfan Chen;Peijun Guo;B. Dong;Zhirou Zhang;R. Chang;Cheng Sun - 通讯作者:
Cheng Sun
High-throughput 3D printing of customized imaging lens
高通量3D打印定制成像镜头
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Xiangfan Chen;Wenzhong Liu;B. Dong;H. Ware;Hao F. Zhang;Cheng Sun - 通讯作者:
Cheng Sun
Rapid 3D printing of electro-active hydrogels
- DOI:
10.1016/j.mfglet.2024.09.106 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Wenbo Wang;Siying Liu;Mingqi Yu;Xiangfan Chen - 通讯作者:
Xiangfan Chen
Xiangfan Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗
根分叉病变的临床疗效研究
- 批准号:2024JJ9542
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态
光散射免疫传感检测平台的建立及机制研究
- 批准号:Q24C200014
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
- 批准号:LY23E080003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
过渡金属掺杂与原位外延生长Z型异质结协同增强BiO2-x的宽光谱光催化活化分子氧去除水中难降解微塑料的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
- 批准号:22005126
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
6-BIO 抗肝脏衰老的作用与作用机制研究
- 批准号:19ZR1438800
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
- 批准号:
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
- 批准号:41877481
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
BRC-BIO: Alpine Hotspots: Nutrient patches facilitate upslope expansion of tropical alpine communities undergoing rapid climate change
BRC-BIO:高山热点:营养斑块促进经历快速气候变化的热带高山群落的上坡扩张
- 批准号:
2217840 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMSG: Bio: Rapid Biomanufacturing of mRNA Vaccines in Plant Chloroplasts
FMSG:生物:植物叶绿体中 mRNA 疫苗的快速生物制造
- 批准号:
2134535 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Rapid and ultrasensitive (bio)chemical detection with dendritic metallic nanoparticle structures
利用树枝状金属纳米颗粒结构进行快速、超灵敏(生物)化学检测
- 批准号:
RGPIN-2018-06173 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10676895 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Bio-Inspired Glycan Based Probes for Rapid Detection of TB Infection
用于快速检测结核感染的仿生聚糖探针
- 批准号:
2879762 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Studentship
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10456945 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Rapid and ultrasensitive (bio)chemical detection with dendritic metallic nanoparticle structures
利用树枝状金属纳米颗粒结构进行快速、超灵敏(生物)化学检测
- 批准号:
RGPIN-2018-06173 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10313294 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Rapid Molecular (Bio)material Imaging by Infrared and Raman Microscopies
通过红外和拉曼显微镜进行快速分子(生物)材料成像
- 批准号:
LE200100043 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
RAPID: Collaborative Research: New Generation of a Bio-inspired Protective Mask Based on Thermal & Vortex Traps
RAPID:合作研究:新一代基于热的仿生防护口罩
- 批准号:
2028090 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant