RII Track-4: NSF: An Integrated Multiphysics Machine Learning Modeling and Experimental Framework for Optimizing Micro-Needle Patches
RII Track-4:NSF:用于优化微针贴片的集成多物理场机器学习建模和实验框架
基本信息
- 批准号:2229555
- 负责人:
- 金额:$ 21.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Microneedle patches (MNPs) have provided a solution for different problems associated with needle injection in children and adults such as needle phobia, pain, infection, and even the requirement for a specialist. MNPs deliver a local, pain-free, safe, high-efficiency, and cost-effective way for drug and vaccine delivery. The small needles on MNPs are barely visible to the naked eye. Therefore, manufacturing such products with such details requires state-of-the-art techniques. Among different methods, one of the most efficient techniques is additive manufacturing (3D printing), which itself is a complex process and is controlled by various environmental and physical parameters. Controlling and optimizing all factors at different stages of production is vital for achieving a target design of MNPs. The design of the final product, consequently, controls its mechanical properties. Since the process of optimizing all the parameters involved is computationally very expensive, a machine learning technique will be applied in this project. To test the hypothesis, the 3D printing equipment, which is uniquely available at Stanford University, will be advanced. The proposed research and the associated partnerships will pave the way for developing more efficient MNPs by shedding light on the underlying phenomena and integration of theory and experiments.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant Professor and a graduate student University of Wyoming (UW). In the field of 3D printing, one of the popular printing techniques used in fabricating MNPs is continuous liquid interface production (CLIP), which is a category of vat polymerization technique. Aside from the variables involved in the manufacturing device, processes, and materials, the whole process occurs in a multiphysics environment, which has made the development of computational modeling complicated and time-demanding. All these variabilities can lead to insufficient repeatability, uncertainty, and inconsistency between the produced MNPs, and what is considered the target model, and often the targeted structure is not produced. Reducing uncertainty is one of the prominent problems in MNPs fabrication which we aim to study by integrating both theoretical and experimental tests within the machine-learning framework. We hypothesize that more accurate and effective MNPs, in terms of mechanical stability, can be produced when a large number of scenarios are tested in a closed-loop framework, and it also can help reduce the cost and required time significantly. The proposed research involves a real-time and supervised process that can potentially transform our understanding of the underlying parameters of efficiency and how such effects control the performances.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
针头贴片(MNP)为儿童和成人中与针头注射相关的不同问题提供了解决方案,例如针头恐惧症、疼痛、感染,甚至需要专家。MNP提供了一种本地、无痛、安全、高效和具有成本效益的药物和疫苗输送方式。MNP上的小针几乎肉眼可见。因此,制造具有这种细节的产品需要最先进的技术。在不同的方法中,最有效的技术之一是增材制造(3D打印),它本身是一个复杂的过程,受各种环境和物理参数的控制。控制和优化各个生产阶段的所有因素是实现MNP目标设计的关键。因此,最终产品的设计控制其机械性能。由于优化所有相关参数的过程在计算上非常昂贵,因此将在该项目中应用机器学习技术。为了验证这一假设,斯坦福大学独有的3D打印设备将是先进的。拟议的研究和相关的伙伴关系将铺平道路,通过揭示潜在的现象和理论与实验的整合,开发更有效的MNP。这个研究基础设施改善轨道-4 EPSCoR研究员(RII轨道-4)项目将提供奖学金,以助理教授和研究生怀俄明州大学(UW)。在3D打印领域中,用于制造MNP的流行打印技术之一是连续液体界面生产(CLIP),其是一种瓮聚合技术。除了制造设备、工艺和材料中涉及的变量外,整个过程都发生在多物理场环境中,这使得计算建模的开发变得复杂和耗时。所有这些可变性可能导致所产生的MNP与被认为是目标模型的MNP之间的重复性不足、不确定性和不一致性,并且通常不产生目标结构。减少不确定性是MNP制造中的突出问题之一,我们的目标是通过在机器学习框架内整合理论和实验测试来研究。我们假设,在机械稳定性方面,当在闭环框架中测试大量场景时,可以产生更准确和有效的MNP,并且它还可以帮助显着降低成本和所需时间。这项研究涉及一个实时和监督的过程,可以潜在地改变我们对效率的基本参数以及这些影响如何控制性能的理解。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Serveh Kamrava其他文献
Inverse design of microstructures using conditional continuous normalizing flows
使用条件连续归一化流的微观结构逆向设计
- DOI:
10.1016/j.actamat.2024.120704 - 发表时间:
2025-02-15 - 期刊:
- 影响因子:9.300
- 作者:
Hossein Mirzaee;Serveh Kamrava - 通讯作者:
Serveh Kamrava
A Multiscale Approach for Geologically and Flow Consistent Modeling
- DOI:
10.1007/s11242-018-1062-x - 发表时间:
2018-04-17 - 期刊:
- 影响因子:2.600
- 作者:
Pejman Tahmasebi;Serveh Kamrava - 通讯作者:
Serveh Kamrava
Effect of Wettability on Two-Phase Flow Through Granular Porous Media: Fluid Rupture and Mechanics of the Media
润湿性对通过颗粒多孔介质的两相流的影响:流体破裂和介质的力学
- DOI:
10.1016/j.ces.2023.118446 - 发表时间:
2023-04-05 - 期刊:
- 影响因子:4.300
- 作者:
Mehryar Amir Hosseini;Serveh Kamrava;Muhammad Sahimi;Pejman Tahmasebi - 通讯作者:
Pejman Tahmasebi
Managing abnormal operation through process integration and cogeneration systems
- DOI:
10.1007/s10098-014-0767-y - 发表时间:
2014-05-01 - 期刊:
- 影响因子:3.900
- 作者:
Serveh Kamrava;Kerron J. Gabriel;Mahmoud M. El-Halwagi;Fadwa T. Eljack - 通讯作者:
Fadwa T. Eljack
Serveh Kamrava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant