RII Track-4:NSF:Understanding the Fundamental Physics of Acousto-Magnetic Microswimmers to Realize Precise, Tunable Motion at Microscales
RII Track-4:NSF:了解声磁微型游泳器的基础物理学,以实现微尺度的精确、可调运动
基本信息
- 批准号:2229636
- 负责人:
- 金额:$ 18.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Microscale synthetic devices (or microswimmers) that can offer precise and controllable motion at microscales have the potential to transform healthcare and bioengineering. For example, these devices can provide direct access to complex regions of the human body through on-board imaging and wireless data transmission to enable targeted drug delivery and localized medical interventions. However, despite considerable progress in microscale propulsion research, controlled, programmable and biocompatible motion of microswimmers is yet to be realized. This project combines external acoustic and magnetic fields to achieve tunable and computationally predictable motion at microscales. To this end, the PI will integrate his computational methods with experimental measurements using state-of-the-art fabrication and characterization facilities at the University of Pennsylvania. This systematic investigation will generate crucial insights into microscale propulsion and will provide a comprehensive understanding of microswimmer motion and its relation to acoustic and magnetic fields. This project will establish a long-term collaboration between the PI’s home institution of the University of Nebraska-Lincoln and the University of Pennsylvania to elucidate the fundamental mechanisms that govern the microswimmer motion.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant Professor and training for a graduate student at the University of Nebraska-Lincoln (UNL). Synthetic devices (microswimmers) that offer controlled, powered, autonomous motion at microscales can enable novel applications such as diagnostic sensing and targeted drug delivery. However, an ideal propulsion strategy that combines advanced navigational capabilities with excellent biocompatibility is yet to be realized. The overarching goal of this research is to combine acoustic and magnetic fields to achieve controlled motion at microscales. To this end, the PI will integrate a novel fluid-structure interaction computational framework with advanced experimental approaches to perform extensive characterization of microswimmer motion and develop a predictive computational capability that can relate the microswimmer motion with external fields. The PI will adopt an integrated computational and experimental approach by working in collaboration with a team at the University of Pennsylvania to leverage state-of-the-art fabrication and characterization facilities for understanding microswimmer motion. Objectives will include to: (1) understand the relation between acoustic frequency, bubble oscillation modes, and the flow field around the microswimmer; (2) relate microswimmer trajectories with the external acoustic and magnetic fields; and (3) identify novel microswimmer designs and functionalities by exploring the parametric space via an integrated computational and experimental approach. This fellowship will lead to new fundamental knowledge on the physical underpinnings of acousto-magnetic microswimmers and will facilitate novel microswimmer trajectories, functionalities, and applications. Ultimately, the PI will utilize the knowledge gained during this fellowship to advance research infrastructure at the University of Nebraska-Lincoln and sustain a long-term collaborative research effort for microscale propulsion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微尺度合成设备(或微泳者)可以在微尺度上提供精确和可控的运动,有可能改变医疗保健和生物工程。例如,这些设备可以通过机载成像和无线数据传输提供对人体复杂区域的直接访问,以实现靶向药物输送和局部医疗干预。然而,尽管在微尺度推进研究取得了相当大的进展,可控的,可编程的和生物相容的运动的微型游泳者尚未实现。该项目结合了外部声场和磁场,以实现可调和计算可预测的运动在微观尺度上。为此,PI将使用宾夕法尼亚大学最先进的制造和表征设施将他的计算方法与实验测量相结合。这项系统的研究将产生对微尺度推进的重要见解,并将提供对微型游泳者运动及其与声场和磁场的关系的全面了解。该项目将在PI的家乡内布拉斯加大学林肯分校和宾夕法尼亚大学之间建立长期合作,以阐明控制微型游泳运动的基本机制。该研究基础设施改善轨道-4 EPSCoR研究员(RII Track-4)项目将为内布拉斯加大学林肯分校的一名助理教授提供研究金,并为一名研究生提供培训(UNL)。在微尺度上提供受控、动力、自主运动的合成设备(微泳者)可以实现新的应用,如诊断传感和靶向药物输送。然而,一个理想的推进策略,结合先进的导航能力与良好的生物相容性尚未实现。这项研究的首要目标是将联合收割机的声场和磁场结合起来,以实现在微尺度上的受控运动。为此,PI将整合一种新的流体-结构相互作用计算框架与先进的实验方法,以进行广泛的表征microswimmer运动,并开发一种预测计算能力,可以将microswimmer运动与外部场联系起来。PI将通过与宾夕法尼亚大学的一个团队合作,采用集成的计算和实验方法,利用最先进的制造和表征设施来理解微型游泳者的运动。目标将包括:(1)了解声学频率、气泡振荡模式和微型游泳器周围的流场之间的关系;(2)将微型游泳器轨迹与外部声场和磁场相关联;以及(3)通过综合计算和实验方法探索参数空间来识别新型微型游泳器设计和功能。该奖学金将导致新的基础知识的物理基础上的声磁microswimmer,并将促进新的microswimmer轨迹,功能和应用。最终,PI将利用在此奖学金期间获得的知识,以推进内布拉斯加大学林肯分校的研究基础设施,并维持长期的合作研究工作的微型propulsion.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nitesh Nama其他文献
Nitesh Nama的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant