RII Track-4: NSF: Data-driven Computational and Machine Learning Assessment of Structure-Toxicity Relationship of Micro/NanoPlastics
RII Track-4:NSF:微/纳米塑料结构-毒性关系的数据驱动计算和机器学习评估
基本信息
- 批准号:2229755
- 负责人:
- 金额:$ 19.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, funded by the NSF EPSCoR Program, Professor B. Rasulev of the Department of Coatings and Polymeric Materials at North Dakota State University is investigating properties and toxicity of environmental contaminants, such as microplastics and nanoplastics, by combination of experimental and computational methods. The developed new methodology within this project will offer an efficient and cost-effective prediction of microplastics and nanoplastics properties to assess a possible environmental impact of these contaminants. An interdisciplinary collaboration between the PI and host institution at Rutgers University will put together state-of-the-art methods to reveal the main factors responsible for the biodegradation and toxicity of microplastics and nanoplastics in environment. The project aims to close the gap in understanding mechanisms of the micro-nanoplastics degradation and toxicity mechanism. Based on results of this research the scientific community will develop an understanding in potential environmental impact of microplastics and various cost-effective ways for their toxicity assessment. The project lies at the interface of organic, materials chemistry, theoretical quantum chemistry, cheminformatics and data mining approaches, and is therefore well suited to the education of scientists at all levels. The involved PIs in this project are also well-positioned to provide the highest level of education and training for STEM students underrepresented in science. Outreach activities involving tribal college students and K-12 students will also be part of the funded project. This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant Professor and training for a graduate student at North Dakota State University (NDSU). The project is intended to investigate properties and toxicity of microplastics and nanoplastics by combination of experimental and computational methods that cover a complete integrated mechanistic study and development cycle of these environmental contaminants. The research project will result in (1) experimental characterization of a set of microplastic/nanoplastic materials; (2) characterization of micro/nanoplastics by experimental and computational data; (3) structure-property/toxicity analysis; and (4) predictions and validation of structure-property models as a potential method for property and toxicity assessment of various microplastic/nanoplastic materials. A strong interdisciplinary collaboration between PI and host institution at Rutgers University will put together state-of-the-art methods to reveal the main factors responsible for the biodegradation and toxicity of microplastics and nanoplastics in environment. All results from this multi-disciplinary investigation which focuses on the fundamental molecular mechanistic studies will be used as a foundation for the long-term collaboration with host institution and the PI. The project aims to close the gap in understanding mechanisms of the micro-nanoplastics degradation and toxicity mechanism, reveal the factors facilitating microplastics degradation and develop predictive models to assess the properties of various microplastic/nanoplastic materials. The innovations of the project are two-fold: (1) Development of machine learning structure-property/toxicity relationship models to understand the physico-chemical properties, degradation and toxicity of investigated polymeric systems; (2) The developed methodology will allow a preliminary assessment of degradation and toxicity properties of new polymeric materials before their mass production. The methodology will be transformative to be applicable for structure-property relationship modeling of other important properties of polymeric materials, for further rational design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个由NSF EPSCoR项目资助的项目中,B教授。北达科他州州立大学涂料和聚合物材料系的Rasulev正在通过实验和计算方法相结合的方式,研究微塑料和纳米塑料等环境污染物的性质和毒性。该项目中开发的新方法将提供一种有效且具有成本效益的微塑料和纳米塑料特性预测,以评估这些污染物可能对环境造成的影响。PI和罗格斯大学主办机构之间的跨学科合作将汇集最先进的方法,以揭示环境中微塑料和纳米塑料生物降解和毒性的主要因素。该项目旨在缩小在理解微纳米塑料降解机制和毒性机制方面的差距。根据这项研究的结果,科学界将了解微塑料的潜在环境影响以及各种具有成本效益的毒性评估方法。该项目位于有机,材料化学,理论量子化学,化学信息学和数据挖掘方法的接口,因此非常适合各级科学家的教育。参与该项目的PI也有能力为科学领域代表性不足的STEM学生提供最高水平的教育和培训。涉及部落大学生和K-12学生的外联活动也将是资助项目的一部分。 这个研究基础设施改善轨道-4 EPSCoR研究员(RII轨道-4)项目将提供奖学金,以助理教授和培训研究生在北达科他州州立大学(NDSU)。该项目旨在通过实验和计算方法相结合来研究微塑料和纳米塑料的特性和毒性,这些方法涵盖了这些环境污染物的完整综合机制研究和开发周期。该研究项目将导致(1)一组微塑料/纳米塑料材料的实验表征;(2)通过实验和计算数据表征微/纳米塑料;(3)结构-性能/毒性分析;和(4)预测和验证结构-性能模型作为各种微塑料/纳米塑料材料的性能和毒性评估的潜在方法。PI与罗格斯大学主办机构之间的跨学科合作将汇集最先进的方法,以揭示环境中微塑料和纳米塑料生物降解和毒性的主要因素。这项多学科研究的所有结果都集中在基础分子机制研究上,将作为与主办机构和PI长期合作的基础。该项目旨在缩小在理解微纳米塑料降解机制和毒性机制方面的差距,揭示促进微塑料降解的因素,并开发预测模型以评估各种微塑料/纳米塑料材料的性能。该项目的创新有两个方面:(1)开发机器学习结构-性能/毒性关系模型,以了解所研究的聚合物系统的物理化学性质,降解和毒性;(2)开发的方法将允许在大规模生产之前对新聚合物材料的降解和毒性进行初步评估。该方法将是变革性的,适用于聚合物材料的其他重要性能的结构-性能关系建模,以进一步合理的design.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bakhtiyor Rasulev其他文献
AQUA Tox: A web tool for predicting aquatic toxicity in rotifer species using intrinsic explainable models
水毒性:一种使用内在可解释模型预测轮虫物种水生毒性的网络工具
- DOI:
10.1016/j.jhazmat.2025.138050 - 发表时间:
2025-07-15 - 期刊:
- 影响因子:11.300
- 作者:
Karel Diéguez-Santana;Gerardo M. Casanola-Martin;Roldan Torres-Gutiérrez;Bakhtiyor Rasulev;Humberto González-Díaz - 通讯作者:
Humberto González-Díaz
Prediction of key structural features responsible for aromaticity of single-benzene ring pollutants and their photooxidative intermediates
- DOI:
10.1016/j.cej.2015.04.082 - 发表时间:
2015-09-15 - 期刊:
- 影响因子:
- 作者:
Daria Juretic;Hrvoje Kusic;Dionysios D. Dionysiou;Bakhtiyor Rasulev;Igor Peternel;Ana Loncaric Bozic - 通讯作者:
Ana Loncaric Bozic
First report on Quantitative Structure-Toxicity Relationship modeling approaches for the prediction of acute toxicity of various organic chemicals against rotifer species
关于用于预测各种有机化学品对轮虫物种急性毒性的定量构效关系建模方法的第一份报告
- DOI:
10.1016/j.scitotenv.2025.179350 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:8.000
- 作者:
Karel Diéguez-Santana;Gerardo M. Casanola-Martin;Roldan Torres-Gutiérrez;Bakhtiyor Rasulev;Humberto González-Díaz - 通讯作者:
Humberto González-Díaz
Chemical feature-based machine learning model for predicting photophysical properties of BODIPY compounds: density functional theory and quantitative structure–property relationship modeling
- DOI:
10.1007/s00894-024-06240-4 - 发表时间:
2024-12-12 - 期刊:
- 影响因子:2.500
- 作者:
Gerardo M. Casanola-Martin;Jing Wang;Jian-ge Zhou;Bakhtiyor Rasulev;Jerzy Leszczynski - 通讯作者:
Jerzy Leszczynski
Estimation of melting points of large set of persistent organic pollutants utilizing QSPR approach
- DOI:
10.1007/s00894-016-2917-0 - 发表时间:
2016-02-13 - 期刊:
- 影响因子:2.500
- 作者:
Marquita Watkins;Natalia Sizochenko;Bakhtiyor Rasulev;Jerzy Leszczynski - 通讯作者:
Jerzy Leszczynski
Bakhtiyor Rasulev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bakhtiyor Rasulev', 18)}}的其他基金
MRI: Acquisition of a High-Performance Computing System for Scientific Research and Education at NDSU
MRI:NDSU 采购用于科学研究和教育的高性能计算系统
- 批准号:
2019077 - 财政年份:2020
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant
D3SC: Integrated Studies on Designing Organometallic Complexes with Nonlinear Absorption and Near-Infrared Emission
D3SC:非线性吸收和近红外发射有机金属配合物设计的综合研究
- 批准号:
1800476 - 财政年份:2018
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 19.18万 - 项目类别:
Standard Grant