Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries

协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞

基本信息

  • 批准号:
    2230060
  • 负责人:
  • 金额:
    $ 35.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

This project aims to improve security and resilience of machine learning (ML) software. Machine learning has been deployed in many critical domains such as drug discovery, financial planning, autonomous driving, and malware detection. This makes it crucial for ML-based software solutions to function properly even when attacked by malicious actors, leading to a line of research focused on functional vulnerabilities, attacks that attempt to make ML systems produce incorrect results. Less studied, however, are other kinds of vulnerabilities that don't attack the core prediction functionality but still pose security risks. These "non-functional" vulnerabilities include denial of service attacks, which attempt to render the system unusable through overloading it; and side-channel attacks, which analyze features like response time to infer sensitive information about the models or data they are trained on. This project will develop methods for detecting and correcting these kinds of non-functional vulnerabilities and make those methods widely available, as well as disseminate educational materials to help security researchers and ML software developers be more aware of these risks. Despite a growing number of reported denial-of-service (DoS) and side channel (SC) vulnerabilities in core ML libraries such as NumPy and TensorFlow, a systematic approach to identifying and debugging them has not been explored due to multiple technical challenges: i) non-functional behaviors are not explicitly encoded in the syntax or semantics of ML code; ii) existing fault localization methods often fail to establish causal relationships; and iii) automatic DoS/SC mitigation is largely lacking for ML applications. This project will develop a novel methodology that combines evolutionary algorithms with a gradient-based guidance to detect DoS and quantify the strengths of SC vulnerabilities. For debugging, the project explores causally guided statistical methods to localize the root causes and guide an optimal mitigation policy. The project team will make a concerted effort to increase participation of women, Hispanic, and other underrepresented communities via special topic courses, research experiences for undergraduates, and summer camps for K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在提高机器学习(ML)软件的安全性和弹性。机器学习已被部署在许多关键领域,如药物发现、财务规划、自动驾驶和恶意软件检测。这使得基于ML的软件解决方案即使在受到恶意攻击时也能正常运行至关重要,这导致了一系列专注于功能漏洞的研究,这些攻击试图使ML系统产生错误的结果。然而,研究较少的是其他类型的漏洞,这些漏洞不会攻击核心预测功能,但仍然构成安全风险。这些“非功能性”漏洞包括拒绝服务攻击,这种攻击试图通过使系统过载而使系统无法使用;和侧通道攻击,分析响应时间等特征,推断出有关模型或数据的敏感信息。该项目将开发检测和纠正这类非功能性漏洞的方法,并使这些方法广泛使用,并传播教育材料,以帮助安全研究人员和ML软件开发人员更加了解这些风险。尽管在核心ML库(如NumPy和TensorFlow)中报告了越来越多的拒绝服务(DoS)和侧通道(SC)漏洞,但由于多个技术挑战,尚未探索识别和调试它们的系统方法:i)非功能性行为未显式编码在ML代码的语法或语义中; ii)现有的故障定位方法通常无法建立因果关系;以及iii)ML应用程序在很大程度上缺乏自动DoS/SC缓解。该项目将开发一种新的方法,将进化算法与基于梯度的指导相结合,以检测DoS并量化SC漏洞的强度。对于调试,该项目探索因果导向的统计方法,以定位根本原因并指导最佳缓解政策。该项目团队将通过专题课程、本科生研究体验和K-12学生夏令营,共同努力提高女性、西班牙裔和其他代表性不足的社区的参与度。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saeid Tizpaz-Niari其他文献

Performance of LLMs on VITA test: potential for AI-assisted tax returns for low income taxpayers
  • DOI:
    10.1007/s10506-025-09465-7
  • 发表时间:
    2025-07-08
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Sina Gogani-Khiabani;Ashutosh Trivedi;ShinPing Chyi;Saeid Tizpaz-Niari
  • 通讯作者:
    Saeid Tizpaz-Niari

Saeid Tizpaz-Niari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saeid Tizpaz-Niari', 18)}}的其他基金

Collaborative Research: DASS: Assessing Accountability of Tax Preparation Software Systems
合作研究:DASS:评估报税软件系统的责任
  • 批准号:
    2317206
  • 财政年份:
    2023
  • 资助金额:
    $ 35.34万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 35.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 35.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 35.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 35.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 35.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 35.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 35.34万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 35.34万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 35.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 35.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了