Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
基本信息
- 批准号:2230593
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mitigating and removing greenhouse gas emissions such as carbon dioxide (CO2) from the atmosphere is one of today's most pressing grand challenges. One possible approach to address this challenge is through direct air capture technologies (DAC). DAC technologies can extract CO2 directly from the atmosphere to be stored permanently. Traditional methods for separating gaseous mixtures involve either adsorbing high-pressure gases onto a solid surface and releasing (desorbing) them when the pressure is reduced (known as pressure swing adsorption) or using temperature changes to achieve separation (known as temperature swing adsorption). However, these methods are unsuitable for DAC systems because the concentration gradient, which drives the mass transfer of CO2, is very small. As a result, these methods are highly inefficient in terms of energy usage. Additionally, the current state-of-the-art sorbent materials based on amines or ionic liquids require a lot of energy to desorb the CO2 and regenerate the sorbents. Furthermore, since most sorbent materials have low thermal conductivity, externally heating them for regeneration is inefficient and leads to additional heat losses. It is crucial to develop new materials and technologies that can address these drawbacks and enable the successful implementation of large-scale DAC systems. This project will investigate a class of CO2 sorbent materials that can be induced to release the adsorbed CO2 by applying an external magnetic field. The magnetic field generates local heat within the material, so external energy input is not required. The research will yield new insights into the fundamental energy and mass transfer mechanisms in these magnetic field-responsive sorbents (MF-RSs). The project will also provide opportunities for undergraduate student research experiences, curriculum development, and K-12 STEM outreach at the Missouri University of Science & Technology and the University of Southern California.The purpose of this work is to gain a fundamental understanding of energy and mass transfer mechanisms in MF-RSs for use in DAC systems, namely, composites of F3O4 magnetic nanoparticles and microporous metal-organic frameworks (F3O4/MOF-amine) or mesoporous aminosilicates (Fe3O4/SiO2-amine). The external magnetic field generates local heat due to the static hysteresis and dynamic core losses of the magnetic nanoparticles. The adsorbed CO2 is desorbed without external heating, overcoming the issue of low thermal conductivity of most sorbent materials and avoiding the heat losses accompanying externally heated methods. Computational and experimental investigations will be conducted to understand the factors affecting CO2 release and system regeneration in MF-RSs. The intermolecular attractions that result in the low-energy release of CO2 from magnetic sorbents upon exposure to an external magnetic field will be characterized. Specifically, the research will probe the extent of electron transfer perturbation upon magnetic field induction. The study will also elucidate the effects of heat capacity-magnetization tradeoffs on diffusive thermal and molecular transfers. Finally, the magnetic field-triggered CO2 transport mechanisms during sorbent regeneration in the presence of oxygen, nitrogen, and water will be investigated. A host of experimental and computational techniques will be applied to reveal the energy and mass transfer mechanisms of CO2 adsorption and desorption from MF-RSs in the presence of an external magnetic field. These techniques include molecular-level in-situ spectroscopic measurements and transient desorption tests such as electron paramagnetic resonance (EPR) spectroscopy, frequency-domain thermoreflectance (FDTR), zero-length column (ZLC), and magnetic induction swing adsorption (MISA), which will be combined with density-functional theory (DFT) and nanoscale molecular dynamics simulations. The investigation will open new avenues for developing low-energy sorbent regeneration systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
减少和消除大气中的二氧化碳(CO2)等温室气体排放是当今最紧迫的重大挑战之一。解决这一挑战的一种可能方法是通过直接空气捕获技术(DAC)。DAC技术可以直接从大气中提取二氧化碳并永久储存。用于分离气体混合物的传统方法涉及将高压气体吸附到固体表面上并在压力降低时释放(解吸)它们(称为变压吸附)或使用温度变化来实现分离(称为变温吸附)。然而,这些方法不适用于DAC系统,因为驱动CO2传质的浓度梯度非常小。因此,这些方法在能源使用方面效率极低。此外,目前基于胺或离子液体的现有技术的吸附剂材料需要大量能量来解吸CO2并再生吸附剂。此外,由于大多数吸附剂材料具有低导热性,因此外部加热它们以进行再生是低效的,并且导致额外的热损失。开发能够解决这些缺点并使大规模DAC系统成功实施的新材料和技术至关重要。本计画将研究一种可借由外加磁场诱导释放二氧化碳的二氧化碳吸附材料。磁场在材料内产生局部热量,因此不需要外部能量输入。这项研究将产生新的见解,这些磁场响应吸附剂(MF-RS)的基本能量和质量传递机制。该项目还将为密苏里州科技大学和南加州大学的本科生研究经验、课程开发和K-12 STEM推广提供机会&。这项工作的目的是对用于DAC系统的MF-RS中的能量和传质机制有一个基本的了解,即,F3 O 4磁性纳米颗粒和微孔金属有机骨架(F3 O 4/MOF-胺)或介孔氨基硅酸盐(Fe 3 O 4/SiO2-胺)的复合物。由于磁性纳米颗粒的静态磁滞和动态磁芯损耗,外部磁场产生局部热量。吸附的CO2在没有外部加热的情况下解吸,克服了大多数吸附剂材料的低导热率的问题,并避免了伴随外部加热方法的热损失。将进行计算和实验研究,以了解影响MF-RS中CO2释放和系统再生的因素。分子间的吸引力,导致在低能量释放的CO2从磁性吸附剂暴露于外部磁场时,将其特征在于。具体而言,本研究将探讨磁场感应对电子转移扰动的程度。这项研究还将阐明热容量磁化权衡扩散热和分子转移的影响。最后,磁场触发的CO2运输机制在吸附剂再生过程中,在氧气,氮气和水的存在下,将进行研究。大量的实验和计算技术将被应用于揭示在外部磁场的存在下,从MF-RS的CO2吸附和解吸的能量和质量传递机制。这些技术包括分子水平的原位光谱测量和瞬态解吸测试,如电子顺磁共振(EPR)光谱,频域热反射(FDTR),零长度柱(ZLC)和磁感应摆动吸附(MISA),这将与密度泛函理论(DFT)和纳米级分子动力学模拟相结合。该研究将为开发低能耗吸附剂再生系统开辟新的途径。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muhammad Sahimi其他文献
Inferring shallow storage properties from the analysis of percolation theory of streamflow elasticity
通过对水流弹性渗流理论的分析来推断浅层蓄水特性
- DOI:
10.1016/j.scitotenv.2025.179834 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:8.000
- 作者:
Allen G. Hunt;Behzad Ghanbarian;Muhammad Sahimi - 通讯作者:
Muhammad Sahimi
Scaling, multifractality, and long-range correlations in well log data of large-scale porous media
- DOI:
10.1016/j.physa.2011.01.010 - 发表时间:
2011-06-01 - 期刊:
- 影响因子:
- 作者:
Hassan Dashtian;G. Reza Jafari;Muhammad Sahimi;Mohsen Masihi - 通讯作者:
Mohsen Masihi
Molecular modeling of clay minerals: A thirty-year journey and future perspectives
粘土矿物的分子建模:三十年的历程与未来展望
- DOI:
10.1016/j.ccr.2024.216347 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:23.500
- 作者:
Annan Zhou;Jiapei Du;Ali Zaoui;Wassila Sekkal;Muhammad Sahimi - 通讯作者:
Muhammad Sahimi
Molecular Dynamics Study of Structure, Folding, and Aggregation of Poly-PR and Poly-GR Proteins
- DOI:
10.1016/j.bpj.2020.11.2258 - 发表时间:
2021-01-05 - 期刊:
- 影响因子:
- 作者:
Size Zheng;Ali Sahimi;Katherine S. Shing;Muhammad Sahimi - 通讯作者:
Muhammad Sahimi
Fractal dimension of the bone marrow in metastatic lesions.
转移性病变中骨髓的分形维数。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:3.3
- 作者:
Farhad Moatamed;Farhad Moatamed;Muhammad Sahimi;Muhammad Sahimi;Faramarz Naeim;Faramarz Naeim - 通讯作者:
Faramarz Naeim
Muhammad Sahimi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muhammad Sahimi', 18)}}的其他基金
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
- 批准号:
2000968 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Novel SiC Nanoporous Materials for Separation Applications
用于分离应用的新型碳化硅纳米多孔材料
- 批准号:
0553349 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: Fundamental Studies of Transport of Mixtures in Microporous Membranes under Supercritical Conditions
目标:超临界条件下微孔膜中混合物传输的基础研究
- 批准号:
9907481 - 财政年份:2000
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Dynamic Monte Carlo and Molecular Dynamics Simulations of Transport Catalytic Materials
传输催化材料的动态蒙特卡罗和分子动力学模拟
- 批准号:
9122529 - 财政年份:1992
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
浙江省严重创伤患者康复现状及影响因素调查:基于创伤数据库的纵向研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
自然资源调查监测关键技术研究与应用-战略性萤石资源调查关键技术研究与应用
- 批准号:2025C02051
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
太白贝母病原真菌调查及其携带的真菌病毒多样性研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
自然资源调查监测关键技术研究与应用-自然资源卫星遥感综合监测关键技术研究与应用
- 批准号:2025C02052
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
紧密型医联体对临床研究受试者招募驱动作用的探索性调查研究
- 批准号:2025HP50
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于宏基因组学调查研究市售散装酱卤肉制品微生物污染
- 批准号:2025JJ80232
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于deepseek的自然资源调查监测知识库构建关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多探头超声定位下PICC导管继发性异位的调查分析与 防范策略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
湖南省洞庭湖流域淡水动物产品食源性寄生虫的流行病学调查及溯源研究
- 批准号:2025JJ70413
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于地域-行业-人群三维风险评估模型的新业态劳动者职业健康现状调查及防控策略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
- 批准号:
2331199 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
- 批准号:
2331200 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
- 批准号:
2331202 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
- 批准号:
2402729 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
- 批准号:
2405548 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
- 批准号:
2402728 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant