ASCENT: Reconfigurable Metal-Free Microsystems with Alternative Power Sources
ASCENT:具有替代电源的可重构无金属微系统
基本信息
- 批准号:2231012
- 负责人:
- 金额:$ 149.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Addressing Systems Challenges through Engineering Teams (ASCENT) project will enable a suite of technologies for sustainable micro- and nano-electronics development. The emerging Internet-of-Things and efforts to realize a fully “connected” society and infrastructure requires the mass distribution of electronics, and to do this in a sustainable manner requires the development of eco-friendly electronic materials, circuits, and power sources. The research team will investigate the materials, low-power circuits, and alternative power sources (i.e., non-battery to engineer reconfigurable-metal-free microsystems that can operate with alternative power sources). These systems will (i) be completely composed of carbon-based materials, (ii) be operated from a bio-derived power source, (iii) provide sustained recording of a local environmental metric and (iv) achieve complete biodegradation or recycling upon the end of their operational lifetime. The combination of novel materials science, circuit design, and biofuel cells will enable the next-generation green electronics that can be mass produced at lower cost, at larger scales, distributed throughout our environment, and have minimal ecological impact, while achieving comparable performance when compared to silicon-based microsystems. The project’s multidisciplinary team is strategically set for integrating research with a plan for adding to the engineering curriculum, engaging with the local microelectronics industries, and supporting the national infrastructure and efforts for hybrid manufacturing of electronics.Devices and micros and microsystems for the Internet-of-Things are supposed to be deployed everywhere and to be accessed anytime from anywhere. These simple prerequisites imply significant challenges for the sustainability of the production, distribution, and operation of Internet-of-Things electronics. Notably, the necessary quantity of a microsystem requires the mass use of non-sustainable materials and expensive manufacturing processes. Moreover, the mass distribution of microsystems is tantamount to large scale pollution via electronics waster, if means for recapture, environmental integration, or recycling are not realized. In response to these challenges, this project will engineer sensing-communications nodes composed of metal-free, biodegradable materials, carbon-biological-organic-polymer devices and circuits, and enzymatic fuel cells. Citric acid-based elastomers and cellulosic nanocomposites will be developed for biodegradable elastomeric circuit boards and packaging. Low-power sensors and circuits will be developed from carbon, biological, organic, and polymer-based devices. The sensing-communications node will include an array of organic electrochemical transistors distributed across the biodegradable circuit boards to perform continuous monitoring of humidity, temperature, pH, and volatile organic compounds. The sensing-communications node will be powered by a modular biochemical fuel cell, which employs custom engineered direct electron transfer-type enzymes that convert eco-friendly fuel sources, e.g., glucose and lactate, to suitable electrical power. This completely metal-free sensing-communications node will be integrated, benchmarked against conventional commercial-off-the-shelf systems, and demonstrated in different simulated food storage and supply chain application scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个通过工程团队解决系统挑战(ASCENT)项目将为可持续微电子和纳米电子开发提供一套技术。新兴的物联网以及实现完全“连接”的社会和基础设施的努力需要电子产品的大规模分布,而要以可持续的方式实现这一目标,需要开发环保的电子材料、电路和电源。研究团队将研究材料、低功耗电路和替代电源(即非电池来设计可使用替代电源运行的可重构无金属微系统)。这些系统将(i)完全由碳基材料组成,(ii)由生物能源运行,(iii)提供当地环境指标的持续记录,以及(iv)在其使用寿命结束时实现完全生物降解或回收。新型材料科学、电路设计和生物燃料电池的结合将使下一代绿色电子产品能够以更低的成本、更大的规模进行批量生产,分布在我们的整个环境中,对生态影响最小,同时与硅基微系统相比,实现可比的性能。该项目的多学科团队战略性地旨在将研究与增加工程课程的计划相结合,与当地微电子行业合作,并支持国家基础设施和电子混合制造的努力。物联网设备、微系统和微系统应该部署在任何地方,并可以随时随地访问。这些简单的先决条件意味着物联网电子产品的生产、分销和运营的可持续性面临着重大挑战。值得注意的是,微系统的必要数量需要大量使用不可持续的材料和昂贵的制造工艺。此外,如果不实现回收、环境整合或回收的手段,微系统的大规模分布就相当于电子废物造成的大规模污染。为了应对这些挑战,该项目将设计由无金属、可生物降解材料、碳生物有机聚合物器件和电路以及酶燃料电池组成的传感通信节点。柠檬酸基弹性体和纤维素纳米复合材料将被开发用于可生物降解的弹性体电路板和包装。低功耗传感器和电路将从碳、生物、有机和聚合物设备中开发出来。传感通信节点将包括分布在可生物降解电路板上的有机电化学晶体管阵列,以连续监测湿度、温度、pH 值和挥发性有机化合物。传感通信节点将由模块化生化燃料电池供电,该电池采用定制设计的直接电子转移型酶,将环保燃料源(例如葡萄糖和乳酸)转换为合适的电力。这种完全无金属的传感通信节点将被集成,以传统的商业现成系统为基准,并在不同的模拟食品储存和供应链应用场景中进行演示。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biodegradable elastomeric circuit boards from citric acid-based polyesters
- DOI:10.1038/s41528-023-00258-z
- 发表时间:2023-06
- 期刊:
- 影响因子:14.6
- 作者:Brendan L. Turner;Jack Twiddy;Michael D. Wilkins;Srivatsan Ramesh;Katie Kilgour;Eleo Domingos;Olivia N
- 通讯作者:Brendan L. Turner;Jack Twiddy;Michael D. Wilkins;Srivatsan Ramesh;Katie Kilgour;Eleo Domingos;Olivia N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Daniele其他文献
Evaluating Bacterial Nanocellulose Interfaces for Recording Surface Biopotentials from Plants
评估细菌纳米纤维素界面以记录植物表面生物电势
- DOI:
10.3390/s24072335 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Reynolds;Michael D. Wilkins;Devon Martin;Matt Taggart;Kristina R. Rivera;Meral Tunc;Thomas Rufty;Edgar J. Lobaton;Alper Bozkurt;Michael Daniele - 通讯作者:
Michael Daniele
The continuous 3 month operation of open circuit potential based glucose sensor employing direct electron transfer type FAD dependent glucose dehydrogenase
采用直接电子转移型 FAD 依赖性葡萄糖脱氢酶的基于开路电位的葡萄糖传感器的连续运行 3 个月
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Inyoung Lee;Junko Okuda-Shimazaki;Wakako Tsugawa;Kazunori Ikebukuro;Jeffrey E. Dick;Michael Daniele;Koji Sode - 通讯作者:
Koji Sode
Michael Daniele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Daniele', 18)}}的其他基金
Bio-MAPS: BioMolecular-Array Patterns for Precision Differentiation of Intestinal Stem Cells
Bio-MAPS:用于肠道干细胞精确分化的生物分子阵列模式
- 批准号:
2033997 - 财政年份:2021
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
CAREER: Reconfigurable Microfluidic-Microbalance Sensors to Monitor and Optimize the Performance of Microphysiological Models
职业:可重构微流体-微平衡传感器,用于监测和优化微生理模型的性能
- 批准号:
1846911 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
NSF Workshop on Reconfigurable Sensor Systems Integrated with Artificial Intelligence and Data Harnessing to Enable Personalized Medicine
NSF 研讨会:可重构传感器系统与人工智能和数据利用相结合,实现个性化医疗
- 批准号:
1842348 - 财政年份:2018
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
相似海外基金
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 149.99万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Neural-driven, active, and reconfigurable mechanical metamaterials (NARMM)
神经驱动、主动和可重构机械超材料 (NARMM)
- 批准号:
MR/X035506/1 - 财政年份:2024
- 资助金额:
$ 149.99万 - 项目类别:
Fellowship
Spatial light modulator by MEMS reconfigurable metamaterial for Terahertz wave
太赫兹波MEMS可重构超材料空间光调制器
- 批准号:
23K20256 - 财政年份:2024
- 资助金额:
$ 149.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design and Analysis of Holographic Optical Reconfigurable Intelligent Surface for Free-Space Optical Communications
自由空间光通信全息光学可重构智能表面设计与分析
- 批准号:
24K17272 - 财政年份:2024
- 资助金额:
$ 149.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
- 批准号:
EP/Y004086/1 - 财政年份:2024
- 资助金额:
$ 149.99万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant