Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials

合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中

基本信息

  • 批准号:
    2231078
  • 负责人:
  • 金额:
    $ 32.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Design of multimodal microstructures has emerged as a promising strategy for the discovery and development of metallic materials with a great strength-ductility combination for structural applications. Such a design strategy is of particular importance for elemental or single-phase metals. However, current manufacturing methodologies for multimodal material fabrications face a major technical challenge of controlling the three-dimensional microstructural heterogeneity. This collaborative research award supports fundamental research towards understanding the mechanisms of how nanoparticles assemble on their own in laser/powder-based additive manufacturing (AM) to alter grain nucleation and growth and achieve effective manufacturing of multimodal materials with desired microstructural heterogeneity. By including special nanoparticles in powder feedstock and plausibly achieving self-assembly of added nanoparticles in solidification fronts, this fabrication means, capable of influencing grain sizes and geometries if successful, will lead to a manufacturing technology for a large variety of multimodal metallic materials with improved properties towards critical applications in aerospace, automotive, military, and biomedical industries. This joint project will also provide a training platform for a diversified student body through research opportunities and will broaden participations from women and underrepresented students in research. The theme and results of this project will be utilized to enhance the engineering partnership with local community colleges around the region of the two institutions.The overall goal of this research is to gain fundamental understanding of the mechanisms that govern nanoparticle self-assembly behavior, microstructure evolution, and property enhancement in AM of multimodal titanium and its alloys using a laser heat source and powder feedstock. The effect of nanoparticle self-assembly at the liquid-crystal interface on solidification front stability and grain nucleation and growth during laser AM will first be investigated using three-dimensional phase-field simulation incorporating CALPHAD databases with experimental characterizations of grain changes. Next, using micromechanical modeling and crystal plasticity simulations, the team will elucidate the modified and improved strength-ductility combinations as affected by the three-dimensional distribution of multimodal grain structures. With the knowledge of grain modification and three-dimensional grain structure designs, metal AM experiments, using both powder-bed fusion (PBF) and directed energy deposition (DED), while integrating nanoparticle self-assembly, will be systematically designed and performed to investigate and establish the process-microstructure-property relationship. The new knowledge of nanoparticle self-assembly at the liquid-crystal interfaces during rapid solidification as in PBF and DED will be beneficial to other fusion-based manufacturing technologies, including welding, casting, and electron-beam manufacturing. Furthermore, basic knowledge of process-microstructure-property relationship in metal AM will lead to the development of novel multimodal materials with potentially unprecedented mechanical properties for widespread applications. This project is jointly funded by the Advanced Manufacturing program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多峰微结构的设计已经成为发现和开发具有很大强度-延展性组合的金属材料用于结构应用的有前途的策略。这种设计策略对于元素或单相金属特别重要。然而,当前多峰材料制造的制造方法面临着控制三维微观结构异质性的重大技术挑战。该合作研究奖支持基础研究,以了解纳米颗粒如何在激光/粉末增材制造(AM)中自行组装的机制,以改变晶粒成核和生长,并实现具有所需微观结构异质性的多峰材料的有效制造。通过在粉末原料中加入特殊的纳米颗粒,并在固化前沿可连续地实现添加的纳米颗粒的自组装,如果成功的话,这种能够影响晶粒尺寸和几何形状的制造方法将导致用于多种多峰金属材料的制造技术,这些材料具有改善的性能,适用于航空航天,汽车,军事和生物医学工业中的关键应用。这一联合项目还将通过研究机会为多样化的学生群体提供一个培训平台,并将扩大妇女和代表性不足的学生对研究的参与。本项目的主题和成果将用于加强与两个机构所在地区的当地社区学院的工程合作伙伴关系。本研究的总体目标是对使用激光热源和粉末原料的多峰钛及其合金的AM中的纳米颗粒自组装行为、微观结构演变和性能增强的机制获得基本的理解。纳米粒子自组装在液晶界面上的凝固前沿的稳定性和晶粒的成核和生长在激光AM的影响将首先使用三维相场模拟结合的CALPHAD数据库与实验表征的晶粒变化。接下来,使用微观力学建模和晶体塑性模拟,该团队将阐明受多峰晶粒结构三维分布影响的修改和改进的强度-延展性组合。结合晶粒改性和三维晶粒结构设计的知识,将系统地设计和执行金属AM实验,使用粉末床熔融(PBF)和定向能量沉积(DED),同时集成纳米颗粒自组装,以研究和建立工艺-组织-性能关系。在PBF和DED快速凝固过程中,纳米粒子在液晶界面自组装的新知识将有利于其他基于熔融的制造技术,包括焊接,铸造和电子束制造。此外,在金属AM的工艺-微观结构-性能关系的基础知识将导致新的多峰材料的开发具有潜在的前所未有的广泛应用的机械性能。该项目由先进制造计划和激励竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiliang Liao其他文献

Significantly enhanced interfacial thermal transport between single-layer graphene and water through basal-plane oxidation
通过基面氧化显著增强单层石墨烯与水之间的界面热传输
  • DOI:
    10.1016/j.carbon.2024.119910
  • 发表时间:
    2025-03-05
  • 期刊:
  • 影响因子:
    11.600
  • 作者:
    Haoran Cui;Iyyappa Rajan Panneerselvam;Pranay Chakraborty;Qiong Nian;Yiliang Liao;Yan Wang
  • 通讯作者:
    Yan Wang
Improving the properties of an Al matrix composite fabricated by laser powder bed fusion using graphene–TiOsub2/sub nanohybrid
使用石墨烯 - 二氧化钛纳米杂化物改善通过激光粉末床熔合制造的铝基复合材料的性能
  • DOI:
    10.1016/j.jallcom.2022.168596
  • 发表时间:
    2023-03-25
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Siavash Imanian Ghazanlou;Siamak Imanian Ghazanlou;Sroush Imanian Ghazanlou;Saman Hosseinpour;Yiliang Liao;Mousa Javidani
  • 通讯作者:
    Mousa Javidani
Effect of the substrate inclination angle on 316L stainless steel fabricated by hollow-laser direct energy deposition
空心激光直接能量沉积制备 316L 不锈钢时基底倾斜角度的影响
  • DOI:
    10.1016/j.jmapro.2024.12.027
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Hang Zhou;Gangxian Zhu;Jiaqiang Li;Guangming Li;Xing Zhang;Yiliang Liao
  • 通讯作者:
    Yiliang Liao
A novel solid-state metal additive manufacturing process – Laser-induced Supersonic Impact Printing (LISIP): Exploration of process capability
  • DOI:
    10.1016/j.addma.2024.104356
  • 发表时间:
    2024-08-05
  • 期刊:
  • 影响因子:
  • 作者:
    Yiliang Liao;Fazlay Rubbi;Bo Mao;Bin Li;Fatemeh Delzendehrooy;M. Merajul Haque
  • 通讯作者:
    M. Merajul Haque
Tuning α precipitation via post-heat treatments in direct energy deposited metastable β Ti-5Al-5Mo-5V-3Cr alloy and its impact on mechanical properties
  • DOI:
    10.1016/j.addma.2024.104436
  • 发表时间:
    2024-08-05
  • 期刊:
  • 影响因子:
  • 作者:
    Dian Li;Sydney Fields;Xing Zhang;Deepak V Pillai;Mohammad Merajul Haque;Tirthesh Ingale;Vishal Soni;Yiliang Liao;Rajarshi Banerjee;Yufeng Zheng
  • 通讯作者:
    Yufeng Zheng

Yiliang Liao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325837
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325838
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344766
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325836
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
  • 批准号:
    2310412
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
IntBIO: Collaborative Research: Phenotypes of the Anthropocene: integrating the consequences of sensory stressors across biological scales
IntBIO:合作研究:人类世的表型:整合跨生物尺度的感觉压力源的后果
  • 批准号:
    2316364
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了