Collaborative Research: EAGER: ADAPT: Machine Learning Thermodynamic Speed Limits for Dynamic Materials

协作研究:EAGER:ADAPT:动态材料的机器学习热力学速度限制

基本信息

  • 批准号:
    2231469
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Theory, Models and Computational Methods (CTMC) program in the Division of Chemistry and the Office of Multidisciplinary Activities (OMA), Jason R. Green of the University of Massachusetts Boston and Igor Mezic of the University of California-Santa Barbara will work to advance the fundamental understanding of how to regulate transformations of energy in chemically-active materials. To benefit applications across the energy, biomedical, and healthcare industries, it is necessary to design materials that execute functional behaviors on chosen time scales. Predicting these dynamical processes requires new theoretical methods to simultaneously navigate their large design space, control the timing of dynamical functions, and regulate the dissipation of energy. This project aims to address this need by combining machine learning and physical theory to create new methods for the design and optimization of functional materials with tailored optical, mechanical, or photonic properties on finely tuned time scales. Coupled to these scientific aims, the project will collaboratively create an active learning curriculum to teach chemists the statistical techniques of data science and contribute to the training of a diverse AI(artificial intelligence)-aware workforce.Materials chemistry now aims to create dissipative materials that function dynamically, forming patterns and generating work on finite time scales. Recent experiments have taken the first steps to identify chemical systems that drive transient formation of materials structures. However, further progress requires navigating their large design space and regulating flows of energy from the nanoscale up. Machine learning has potential to guide experiments and accelerate this process but is not yet able to optimize the energy efficiency and timed delivery of structure. The proposed project will address this challenge by strategically incorporating recent advances in statistical mechanics into predictive models from machine learning. The specific objectives will be to (i) construct the data-driven dynamics of active hydrogels with techniques from AI, (ii) show that thermodynamic speed limits can be cast as optimally predictive models in machine learning, and (iii) implement these speed limits as design principles for maximizing yield and minimizing dissipation. The project includes dedicated activities to develop strength in STEM (science, technology, engineering and mathematics) at the intersection of data science and theoretical chemistry and to broaden participation in STEM through targeted outreach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系和多学科活动办公室(OMA)的化学理论,模型和计算方法(CTMC)计划的支持下, Jason R.马萨诸塞州波士顿大学的绿色和加利福尼亚大学圣巴巴拉分校的伊戈尔·梅齐奇将致力于推进对如何调节化学活性材料中能量转化的基本理解。为了使能源,生物医学和医疗保健行业的应用受益,有必要设计在选定的时间尺度上执行功能行为的材料。预测这些动态过程需要新的理论方法来同时导航其大的设计空间,控制动态功能的时序,并调节能量的耗散。该项目旨在通过将机器学习和物理理论相结合来解决这一需求,以创建新的方法来设计和优化功能材料,这些功能材料在微调的时间尺度上具有定制的光学,机械或光子特性。结合这些科学目标,该项目将共同创建一个主动学习课程,教授化学家数据科学的统计技术,并有助于培养多样化的人工智能(人工智能)意识的劳动力。材料化学现在的目标是创造动态功能的耗散材料,形成模式并在有限的时间尺度上产生工作。最近的实验已经迈出了第一步,以确定驱动材料结构瞬态形成的化学系统。然而,进一步的进展需要导航他们的大设计空间和调节能量流从纳米级。机器学习有潜力指导实验并加速这一过程,但还不能优化能源效率和结构的定时交付。拟议的项目将通过战略性地将统计力学的最新进展纳入机器学习的预测模型来应对这一挑战。具体目标将是(i)利用人工智能技术构建活性水凝胶的数据驱动动力学,(ii)证明热力学速度限制可以作为机器学习中的最佳预测模型,以及(iii)将这些速度限制作为设计原则,以最大限度地提高产量和最小化耗散。该项目包括在数据科学和理论化学的交叉点上发展STEM(科学、技术、工程和数学)实力的专门活动,并通过有针对性的推广扩大STEM的参与。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Green其他文献

Lambl’s Excrescences and Stroke: A Scoping Study
兰布尔赘生物和中风:范围研究
  • DOI:
    10.15344/2456-8007/2018/127
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Kariyanna;A. Jayarangaiah;Chandra Rednam;Sudhanva Hegde;J. Marmur;H. Kamran;Perry Wengrofsky;Jason Green;R. Ahmed;Samy I McFarlane
  • 通讯作者:
    Samy I McFarlane
Enabling Persistent Peace After Negotiated Settlements
谈判解决后实现持久和平
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. A. Mejia;Jason Green
  • 通讯作者:
    Jason Green
Erdheim-Chester Disease: A Rare Case of Isolated Pulmonary Involvement
  • DOI:
    10.1016/j.chest.2016.08.890
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Enambir Josan;Jason Green;April Lambert-Drwiega;Emilie Cook;Jayantilal Mehta
  • 通讯作者:
    Jayantilal Mehta
Adherence to NICE guidelines for TMJ replacement at University Hospitals Birmingham
  • DOI:
    10.1016/j.bjoms.2016.11.235
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Cristina Verea;Alan Attard;Bernie Speculand;Jason Green
  • 通讯作者:
    Jason Green
The status of training for TMJ surgery in the UK: a brief online survey
  • DOI:
    10.1016/j.bjoms.2016.11.258
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ross Elledge;Elizabeth Gruber;Jason Green;Alan Attard
  • 通讯作者:
    Alan Attard

Jason Green的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Green', 18)}}的其他基金

Speed Limits on Pattern Formation in Dynamic Materials
动态材料中图案形成的速度限制
  • 批准号:
    2124510
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Theory for dynamic matter: designing mechanisms for dissipative nanomaterials
动态物质理论:耗散纳米材料的设计机制
  • 批准号:
    1856250
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
International Research Fellowship Program: Thermodynamics and Kinetics of Isolated, Molecular Systems
国际研究奖学金计划:孤立分子系统的热力学和动力学
  • 批准号:
    0700911
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了