GOALI: Closed-Loop Control for Precision Extrusion of High-Viscosity Fluids in Robotic Manufacturing

GOALI:机器人制造中高粘度流体精密挤出的闭环控制

基本信息

项目摘要

This Grant Opportunity for Academic Liaison with Industry (GOALI) award supports research that contributes new knowledge related to a fluid deposition manufacturing process. Direct ink writing (DIW) is a form of three-dimensional (3D) printing in which a 3D object is built up by depositing liquid material in a layer-by-layer fashion. This manufacturing process has potential applications in tissue engineering, custom orthotics and prosthetics, robotic adhesive delivery for microelectronics, electric vehicle manufacturing, and aerospace assembly operations. Despite recent advances in the field, current DIW methods suffer from slow manufacturing times, part defects, and structural integrity issues due to the inherent difficulty of working with high-viscosity fluids. To realize the full potential of DIW manufacturing, this research will advance the understanding and technology to enable the precise and rapid delivery of high-viscosity fluids for DIW. This award also supports efforts to recruit and support diverse and underrepresented groups in the robotics and additive manufacturing communities. Through the collaboration of the industrial and academic partners, new knowledge and research outcomes will be incorporated into manufacturing and robotics courses at the University of Michigan and will be shared in the industrial community. The project will build on collaboration with extracurricular and local engineering groups to further expose students to the core tools of manufacturing and robotic integration.Predictive and real-time feedback control of the fluid deposition process is essential for advancing the speed, precision, and reliability of DIW technologies. Existing progress in the field of DIW manufacturing is limited to open-loop execution with exhaustive tuning based on expert and equipment-specific knowledge of the fluid properties, delivery pumps, pipes, nozzles, and toolpaths. These limitations in scientific understanding of high-viscosity fluid delivery mechanics lead to deposition defects such as corner bulging, imprecisions due to early/late start-stops, and structural issues due to drooping, stringing, and void formation. To bridge this gap in DIW technology, this project will integrate computational fluid dynamics modeling, model-predictive control, and global planning optimization algorithms for integrated high-viscosity fluid deposition with nozzle motion path planning. As part of this project, the research team will develop 1) computationally efficient high-viscous flow modeling that is amenable to real-time feedback control, 2) a platform-agnostic and closed-loop optimal controller for high-viscosity fluid deposition, and 3) co-optimized tool and deposition path planning that is informed by fluid dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个学术联络与工业(GOALI)奖资助机会支持研究,有助于与流体沉积制造工艺相关的新知识。直接墨水书写(DIW)是三维(3D)打印的一种形式,其中通过以逐层方式沉积液体材料来构建3D对象。这种制造工艺在组织工程、定制矫形器和假肢、微电子机器人粘合剂输送、电动汽车制造和航空航天组装操作中具有潜在的应用。尽管该领域最近取得了进展,但由于与高粘度流体一起工作的固有困难,当前DIW方法遭受缓慢的制造时间、部件缺陷和结构完整性问题。为了实现DIW制造的全部潜力,这项研究将推进理解和技术,以实现DIW高粘度流体的精确和快速输送。该奖项还支持在机器人和增材制造领域招募和支持多样化和代表性不足的群体。通过工业和学术合作伙伴的合作,新的知识和研究成果将被纳入密歇根大学的制造和机器人课程,并将在工业界共享。该项目将建立在与课外和当地工程小组的合作基础上,进一步让学生接触制造和机器人集成的核心工具。流体沉积过程的预测和实时反馈控制对于提高DIW技术的速度,精度和可靠性至关重要。DIW制造领域的现有进展仅限于开环执行,并基于流体特性、输送泵、管道、喷嘴和刀具路径的专家和设备特定知识进行详尽的调整。在对高粘度流体输送力学的科学理解方面的这些限制导致沉积缺陷,例如角部膨胀、由于早/晚启动-停止而导致的不精确性以及由于下垂、拉丝和空隙形成而导致的结构问题。为了弥补DIW技术的这一差距,该项目将集成计算流体动力学建模、模型预测控制和全局规划优化算法,用于集成高粘度流体沉积和喷嘴运动路径规划。作为该项目的一部分,研究小组将开发1)计算效率高的高粘性流动模型,可用于实时反馈控制,2)用于高粘性流体沉积的平台无关和闭环最佳控制器,(3)共-该奖项反映了NSF的法定使命,并被认为是值得支持的,使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nima Fazeli其他文献

Direct Shear Force Measurement by a GaN Nanopillar LED Based Tactile Sensor
通过基于 GaN 纳米柱 LED 的触觉传感器进行直接剪切力测量
Empirical evaluation of common contact models for planar impact
平面冲击常见接触模型的实证评估
Long-Horizon Prediction and Uncertainty Propagation with Residual Point Contact Learners
残差点接触学习器的长视野预测和不确定性传播
Combining Physical Simulators and Object-Based Networks for Control
结合物理模拟器和基于对象的网络进行控制
Tactile-Driven Non-Prehensile Object Manipulation via Extrinsic Contact Mode Control
通过外部接触模式控制进行触觉驱动的非预握物体操作
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Oller;Dmitry Berenson;Nima Fazeli
  • 通讯作者:
    Nima Fazeli

Nima Fazeli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nima Fazeli', 18)}}的其他基金

NRI: Integrating Perception and Manipulation of Deformable Objects by Learning Implicit Representations
NRI:通过学习隐式表示来集成可变形物体的感知和操纵
  • 批准号:
    2220876
  • 财政年份:
    2022
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant

相似海外基金

SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Cooperative Agreement
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
  • 批准号:
    2336525
  • 财政年份:
    2024
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
Sustainable Sludge Valorisation Technology for Closed-Loop Resource Recovery
用于闭环资源回收的可持续污泥增值技术
  • 批准号:
    EP/Y02480X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Research Grant
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Continuing Grant
CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
  • 批准号:
    2346726
  • 财政年份:
    2024
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
TheraVR – A Closed-Loop MR Interface offering highly personalised mental health solutions
TheraVR – 闭环 MR 界面,提供高度个性化的心理健康解决方案
  • 批准号:
    10054505
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Collaborative R&D
Lifetime optimisation of multiple deep closed-loop geothermal wells
多口深闭环地热井寿命优化
  • 批准号:
    2890095
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Studentship
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
GOALI: A System Theoretical Framework for Modeling, Analysis and Closed-loop Management of Supply Chains of Perishable Products
GOALI:易腐产品供应链建模、分析和闭环管理的系统理论框架
  • 批准号:
    2232412
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了