CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation

职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀

基本信息

项目摘要

This project addresses a critical challenge in cancer treatment: enhancing the precision of thermal ablation technology to effectively target tumors while preserving surrounding healthy tissues. By 2030, it is estimated that over 26 million new cancer cases will arise, with more than 10 million potentially treatable through thermal ablation. Current techniques, however, often compromise healthy tissues due to uncontrolled heat spread, or they risk tumor recurrence by failing to eliminate all cancer cells. This project is dedicated to advancing Tumor Precision Ablation (TPA), a technique designed to precisely control the dispersion of heat in tissues once it is separated from its source. This approach is especially crucial for asymmetrically shaped tumors. The project's vision is to advance science and technology to transform cancer treatment by developing safer and more effective ablation methods. These advancements are particularly vital for treating brain tumors and other diseases where tissue ablation is a key therapeutic strategy, including liver, lung, kidney, and bone tumors, epilepsy foci, motor circuits in movement disorders, and vascular abnormalities in the brain. Integral to this project is an educational plan designed to involve students from underrepresented groups in STEM. This plan includes developing interdisciplinary courses that intersect with majors such as electrical engineering, biomedical engineering, and oncology. It offers research opportunities for undergraduate and graduate students, particularly through programs like Vertically Integrated Projects. Furthermore, it provides mentorship opportunities for graduate students to aid their career development. Outreach activities will be organized for sharing resources, tools, and knowledge with teachers and students, amplifying the project's impact. This project aims to develop a novel ablation catheter, a first in its field, tackling specific scientific challenges in modulating heat penetration and direction during thermal ablation procedures. The core scientific advancements encompass three main areas: (1) Limiting Heat Penetration through a new method that alternates heating and cooling to create a zero-temperature gradient at the tumor boundary, aiming to prevent damage to adjacent healthy tissues; (2) Directing Heat by exploring the interaction between the physics of ultrasound and heat propagations, and modeling this interference, using low-power ultrasound waves to precisely direct heat within tumors of asymmetrical shapes; (3) Real-time Monitoring employing innovative ultra-wideband (UWB) sensors for continuous tracking of the ablation progress, thus enabling accurate and immediate closed-loop control of ablation penetration depth. The proposed research plan comprises three phases of evaluation and assessment, including in vitro tests and in vivo experiments with tumor-bearing small animals. The project's innovative approach in developing this TPA catheter, integrating a heat producer-absorber module for applying an alternate heating and freezing process, ultrasound arrays to direct the heat in the desired direction, and UWB sensors for ablation depth detection, signifies a leap forward in our understanding of heat flux in tissues. This innovative approach is anticipated to greatly influence the fields of microelectronics, heat transfer, and tumor treatment, opening new avenues in precision medicine research and development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决了癌症治疗中的一个关键挑战:提高热消融技术的精确度,以便在保护周围健康组织的同时有效地靶向肿瘤。到2030年,估计将出现超过2600万例新的癌症病例,其中1000多万例可能通过热消融治疗。然而,目前的技术往往由于不受控制的热传播而危及健康组织,或者由于未能消除所有癌细胞而有肿瘤复发的风险。该项目致力于推进肿瘤精确消融(TPA),这是一种设计用于精确控制热量在组织中的扩散的技术,一旦热量从其来源分离出来。这种方法对于不对称形状的肿瘤尤其重要。该项目的愿景是通过开发更安全、更有效的消融方法来推进科学和技术,以改变癌症治疗。这些进展对于治疗脑肿瘤和其他以组织消融为关键治疗策略的疾病尤其重要,包括肝、肺、肾和骨肿瘤、癫痫灶、运动障碍中的运动回路和大脑中的血管异常。这一项目的一个组成部分是一项教育计划,旨在让代表人数不足的群体的学生参加STEM。该计划包括开发与电气工程、生物医学工程和肿瘤学等专业交叉的跨学科课程。它为本科生和研究生提供研究机会,特别是通过垂直整合项目等项目。此外,它还为研究生提供指导机会,以帮助他们的职业发展。将组织外展活动,与教师和学生分享资源、工具和知识,扩大项目的影响。该项目旨在开发一种新的消融导管,这是该领域的第一次,解决在热消融过程中调节热渗透和方向的具体科学挑战。核心科学进展包括三个主要领域:(1)通过加热和冷却交替进行的新方法限制热渗透,从而在肿瘤边界创建零温度梯度,以防止损害邻近健康组织;(2)通过探索超声物理和热传播之间的相互作用来引导热渗透,并对这种干扰进行建模,利用低功率超声波精确地引导不对称形状肿瘤内的热能;(3)实时监测系统,利用创新的超宽带(UWB)传感器连续跟踪消融进度,从而能够准确、即时地对消融穿透深度进行闭环控制。拟议的研究计划包括三个阶段的评估和评估,包括体外测试和携带肿瘤的小动物的体内实验。该项目在开发这种TPA导管方面采用了创新的方法,集成了用于应用交替加热和冷冻过程的产热-吸收模块、将热引导到所需方向的超声阵列以及用于消融深度检测的UWB传感器,这标志着我们对组织热通量的理解取得了飞跃。这一创新方法预计将极大地影响微电子、传热学和肿瘤治疗领域,为精确医学研究和开发开辟新的途径。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seyedabdollah Mirbozorgi其他文献

Seyedabdollah Mirbozorgi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seyedabdollah Mirbozorgi', 18)}}的其他基金

SBIR Phase I: Developing the Standalone Tongue Drive System
SBIR 第一阶段:开发独立舌头驱动系统
  • 批准号:
    1621673
  • 财政年份:
    2016
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Standard Grant

相似国自然基金

环路热管(Loop Heat Pipe)两相传热机理的理论与实验研究
  • 批准号:
    50676006
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Store Electricity and Heat foR climatE Neutral Europe (SEHRENE)
为欧洲气候中和储存电力和热能 (SEHRENE)
  • 批准号:
    10105664
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    EU-Funded
Antarctica's leaky defence to poleward heat transport
南极洲对极地热传输的防御漏洞
  • 批准号:
    DP240102358
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Discovery Projects
The Use of Geothermal Energy for the Decarbonisation of Heat in Greater Manchester
利用地热能实现大曼彻斯特热量脱碳
  • 批准号:
    NE/Y004973/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Research Grant
NI: DEEPHEAT: Digging deep Earth for heat to promote environmental sustainability
NI:DEEPHEAT:挖掘地球深处的热量以促进环境可持续发展
  • 批准号:
    NE/W004127/2
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Research Grant
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Cooperative Agreement
Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
  • 批准号:
    2401066
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Thermoregulatory evolution of hummingbirds: Using urban heat islands as a globally replicated natural experiment
NSF PRFB 2023 财年:蜂鸟的体温调节进化:利用城市热岛作为全球复制的自然实验
  • 批准号:
    2305367
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Fellowship Award
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Continuing Grant
Heat regulation by the fibre types in muscle
肌肉纤维类型的热量调节
  • 批准号:
    DP240101172
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Discovery Projects
Modelling heat and mass transfer during liquid hydrogen refuelling
模拟液氢加注过程中的传热和传质
  • 批准号:
    2911016
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了