Questions at the Interface of Analysis and Number Theory
分析与数论的交叉问题
基本信息
- 批准号:2231990
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Harmonic analysis and number theory are fundamental fields of mathematics that are used to describe and interpret many real-world phenomena. Harmonic analysis involves breaking up a mathematical object such as a function into pieces that are easier to understand. The beauty of this area is that the pieces are oftentimes simple, yet represent the whole with accuracy. Number theory involves deceptively simple statements about the integers, easy to test, yet often difficult to prove. Though seemingly disparate, analysis and number theory share many interactions. For instance, one can use intricate analysis of complex functions to answer fundamental questions about prime numbers. This project explores a variety of problems at the interface of these two areas. In particular, the PI will consider discrete variants of operators in analysis, which enjoy applications in fields such as medical imaging and cosmology. To analyze these operators, continuous techniques often fail, and one has to develop number theoretic techniques adapted to the underlying geometry of the analytic problem. The PI seeks to provide new bounds, new techniques, sharper analysis and broader connections. The PI also plans to bring Fourier analysis, a fundamental decomposition of the time-frequency domain, such as that used to understand waves, into the emerging field of arithmetic statistics. Here she seeks to provide sharp counts of a wide variety of objects of arithmetic interest, such as elliptic curves used in cryptography. As a broader impact, the PI will spark new mathematical conversations between analysts and number theorists and also improve the educational and scientific climate for underrepresented groups.This project addresses several fundamental questions at the interface of analysis and number theory. Firstly, the PI pursues bounds for discrete variants of continuous operators in harmonic analysis that involve integration over a curved subvariety. These bounds provide quantitative distributional facts about the underlying Diophantine equations that define these varieties, which makes them different from their continuous counterparts. In particular, since continuous techniques usually do not carry over in this setting, the PI will develop refined number theoretic techniques to bound several operators, including multilinear spherical variants, variants defined over the primes, and higher codimensional analogues. In particular, the higher codimensional study should open new avenues of problems as very little is known in this setting. Solving these problems has connections to discrete geometry, lattice point counts of surfaces, and Falconer's distance conjecture. In another series of problems, the PI will pursue "sparse bounds" for both continuous and discrete operators. Sparse bounds are a refinement of Lebesgue space bounds that allow one to deduce weighted estimates. Finally, the PI plans to pursue a far reaching program in arithmetic statistics. This is an area greatly developed on the algebraic side recently. The PI plans to inject Fourier analytic techniques to obtain precise lattice point counts that are adaptable to take advantage of the power of the algebraic techniques and push those bounds even further. In particular, the PI hopes to obtain counts on certain objects such as elliptic curves, with an eye to not only developing techniques, but also fostering interactions between number theorists and analysts in new ways.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
调和分析和数论是数学的基本领域,用于描述和解释许多现实世界的现象。 调和分析涉及将数学对象(如函数)分解为更容易理解的部分。 这一领域的美丽之处在于,这些作品往往很简单,但却准确地代表了整体。 数论涉及到关于整数的看似简单的陈述,容易测试,但往往难以证明。 虽然看似不同,分析和数论共享许多相互作用。例如,人们可以使用复杂函数的复杂分析来回答有关素数的基本问题。 这个项目探讨了这两个领域的接口的各种问题。 特别是,PI将在分析中考虑算子的离散变量,这些变量在医学成像和宇宙学等领域中具有应用。 为了分析这些算子,连续技术往往失败,人们必须开发适合于分析问题的基本几何的数论技术。PI寻求提供新的界限,新的技术,更清晰的分析和更广泛的联系。 PI还计划将傅立叶分析(一种时频域的基本分解方法,如用于理解波浪的方法)引入新兴的算术统计领域。 在这里,她试图提供各种算术感兴趣的对象的精确计数,例如密码学中使用的椭圆曲线。 作为一个更广泛的影响,PI将引发分析师和数论家之间新的数学对话,并改善教育和科学氛围的代表性不足的群体。这个项目解决了分析和数论接口的几个基本问题。 首先,PI追求调和分析中连续算子的离散变量的界,这些算子涉及在弯曲子簇上的积分。 这些边界提供了关于定义这些变量的基本丢番图方程的定量分布事实,这使得它们不同于它们的连续对应物。 特别是,由于连续技术通常不会在这种情况下进行,PI将开发精细的数论技术来绑定几个算子,包括多线性球面变体,定义在素数上的变体和更高的余维类似物。 特别是,更高的余维研究应该开辟新的途径的问题,因为很少有人知道在这种情况下。解决这些问题与离散几何、曲面的格点计数和法尔科纳距离猜想有关。 在另一系列的问题中,PI将追求连续和离散算子的“稀疏边界”。 稀疏边界是勒贝格空间边界的细化,允许推导加权估计。 最后,PI计划在算术统计方面开展一项意义深远的计划。 这是一个领域大大发展的代数方面最近。PI计划注入傅立叶分析技术,以获得精确的格点计数,这些格点计数可以利用代数技术的力量,并进一步推动这些边界。 特别是,PI希望获得椭圆曲线等特定对象的计数,不仅着眼于技术的开发,还着眼于以新的方式促进数论家和分析家之间的互动。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative Hilbert Irreducibility and Almost Prime Values of Polynomial Discriminants
多项式判别式的定量希尔伯特不可约性和几乎素值
- DOI:10.1093/imrn/rnab296
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Anderson, Theresa C;Gafni, Ayla;Lemke Oliver, Robert J;Lowry-Duda, David;Shakan, George;Zhang, Ruixiang
- 通讯作者:Zhang, Ruixiang
Bounds on 10th moments of (x, x^3) for ellipsephic sets
椭圆集 (x, x^3) 的 10 阶矩的界限
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Anderson, Theresa;Hu, Bingyang;Liu, Yu-Ru;Talmage, Alan
- 通讯作者:Talmage, Alan
On the translates of general dyadic systems on $${{\mathbb {R}}}$$
关于 $${{mathbb {R}}}$$ 上一般二元系统的翻译
- DOI:10.1007/s00208-019-01951-z
- 发表时间:2020
- 期刊:
- 影响因子:1.4
- 作者:Anderson, Theresa C.;Hu, Bingyang;Jiang, Liwei;Olson, Connor;Wei, Zeyu
- 通讯作者:Wei, Zeyu
Discrete multilinear maximal functions and number theory
离散多重线性极大函数和数论
- DOI:10.1215/00192082-10817246
- 发表时间:2023
- 期刊:
- 影响因子:0.6
- 作者:Anderson, Theresa C.
- 通讯作者:Anderson, Theresa C.
Discrete Maximal Operators Over Surfaces of Higher Codimension
高维表面上的离散最大算子
- DOI:10.1007/s44007-021-00017-4
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Anderson, Theresa C.;Kumchev, Angel V.;Palsson, Eyvindur A.
- 通讯作者:Palsson, Eyvindur A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theresa Anderson其他文献
Estimated Vs. Measured Resting Metabolic Rate to Guide Nutrition Recommendations for Patients with Heart Failure with Reduced Ejection Fraction
- DOI:
10.1016/j.cardfail.2020.09.086 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Thomas Cascino;Theresa Anderson;Daniel Perry;Gillian Grafton;Todd Koelling;Scott L. Hummel - 通讯作者:
Scott L. Hummel
Theresa Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theresa Anderson', 18)}}的其他基金
CAREER: Building bridges between number theory and harmonic analysis
职业:在数论和调和分析之间架起桥梁
- 批准号:
2237937 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Questions at the Interface of Analysis and Number Theory
分析与数论的交叉问题
- 批准号:
1954407 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Analysis and Control in Multi-Scale Interface Coupling between Deformable Porous Media and Lumped Hydraulic Circuits
合作研究:可变形多孔介质与集总液压回路多尺度界面耦合分析与控制
- 批准号:
2327640 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Atomic-scale surface and interface structural analysis of crystal growth process in molten metal
熔融金属中晶体生长过程的原子尺度表面和界面结构分析
- 批准号:
23H01850 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306992 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306991 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CranioRate: An imaging-based, deep-phenotyping analysis toolset, repository, and online clinician interface for craniosynostosis
CranioRate:基于成像的深度表型分析工具集、存储库和在线临床医生界面,用于颅缝早闭
- 批准号:
10568654 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Quantitative analysis of polarization and charge behavior at the interface of organic devices by nonlinear optical spectroscopy.
通过非线性光谱定量分析有机器件界面的偏振和电荷行为。
- 批准号:
22H02048 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical and numerical analysis of Sobolev gradient flows appearing in interface and materials science
界面和材料科学中出现的索博列夫梯度流的数学和数值分析
- 批准号:
22K03425 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The research project lies at the interface of mathematical analysis and geometry. I
该研究项目位于数学分析和几何的交叉点。
- 批准号:
2876004 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Studentship
Experimental modelling and analysis of bone-implant interface loading in the spine
脊柱骨-植入物界面载荷的实验建模和分析
- 批准号:
547222-2020 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Analysis and Control in Multi-Scale Interface Coupling between Deformable Porous Media and Lumped Hydraulic Circuits
合作研究:可变形多孔介质与集总液压回路多尺度界面耦合分析与控制
- 批准号:
2108665 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant