EAGER: SaTC: Quantifying the Fair Value of Data and Privacy in Distributed Learning
EAGER:SaTC:量化分布式学习中数据和隐私的公允价值
基本信息
- 批准号:2232146
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data-driven decision-making drives the engine of our modern economy. As data becomes an increasingly important resource, understanding its value becomes critical. This project marries the economic study of data with the growing field of data privacy to present a framework for quantifying the value of data and privacy. The relationship between users who generate data and platforms that collect and benefit from this data will be explored, progressing our understanding of what constitutes a fair and open data market. Emphasis is placed on the concept of fair payment for data by considering well-known concepts from economics and extending them to include the critical component of user privacy. A better understanding of the value of data and privacy can empower individuals and regulators, leading to a stronger and more productive economy. In addition, the project addresses the important topic of fairness. This research has the potential to transform the way data is viewed, treated, and monetized by studying a fundamental framework where platforms and individuals can both fairly benefit from the value of data.This project systematically approaches the fundamental question of how to quantify the value of data in a privacy-centric game-theoretic framework in order to explore the relationship between platforms and users with data, leading to the concept of a fair and open data market. The concept of fair payment for data is considered using the foundational game-theoretic concept of the Shapley value, and extending this concept to include the critical component of heterogeneous user privacy. Specifically, the proposed project investigates the technical questions of how to quantify the cost of providing privacy, how to monetize the value of data at various heterogeneous levels of privacy, and how to enable platforms to design fair incentive structures. The proposed investigation is highly interdisciplinary, including elements of optimization, machine learning, probability theory, and statistics, as well as critically, from relevant aspects of economics and game theory such as Nash equilibria and Shapley value to treat concepts like fairness and value. The project aims to bridge the recent advancements in rigorous privacy guarantees for statistical inference and machine learning settings with the economics of quantifying the value of data under heterogeneous privacy requirements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据驱动的决策驱动着我们现代经济的引擎。随着数据成为一种日益重要的资源,了解其价值变得至关重要。该项目将数据的经济研究与日益增长的数据隐私领域结合在一起,为量化数据和隐私的价值提供了一个框架。将探讨产生数据的用户与收集这些数据并从中受益的平台之间的关系,从而促进我们对什么是公平和开放的数据市场的理解。重点是通过考虑经济学中的众所周知的概念并将其扩展到包括用户隐私的关键组成部分来强调公平支付数据的概念。更好地理解数据和隐私的价值可以赋予个人和监管机构权力,从而带来更强大和更具生产力的经济。此外,该项目还涉及公平这一重要话题。这项研究通过研究一个基本框架,使平台和个人都可以从数据的价值中公平受益,从而有可能改变数据的查看、处理和货币化的方式。该项目系统地探讨了如何在以隐私为中心的博弈论框架中量化数据价值的基本问题,以探索平台和用户与数据之间的关系,从而产生公平和开放的数据市场的概念。使用基本的博弈论概念Shapley值来考虑数据公平支付的概念,并将该概念扩展到包括不同用户隐私的关键组成部分。具体地说,拟议的项目调查了如何量化提供隐私的成本,如何将各种不同隐私级别的数据的价值货币化,以及如何使平台能够设计公平的激励结构。拟议的调查是高度跨学科的,包括优化、机器学习、概率论和统计学的元素,以及关键的是,从经济学和博弈论的相关方面,如纳什均衡和沙普利值,来处理公平和价值等概念。该项目旨在将统计推理和机器学习环境的严格隐私保障方面的最新进展与在不同隐私要求下量化数据价值的经济学联系起来。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kannan Ramchandran其他文献
Kannan Ramchandran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kannan Ramchandran', 18)}}的其他基金
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002821 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Foundations of Serverless Computing: Optimizing Latency and Utility
CIF:小型:无服务器计算的基础:优化延迟和实用性
- 批准号:
2007669 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: CORE: Small: Blockchain Architectures for Resource-Constrained Devices
EAGER:SaTC:核心:小型:资源受限设备的区块链架构
- 批准号:
1937357 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF:Medium:Collaborative Research: Foundations of Coding for Modern Distributed Computing
CIF:中:协作研究:现代分布式计算编码基础
- 批准号:
1703678 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CIF:Small:Next-Generation Compressive Phase-Retrieval Using Sparse-Graph Codes: Theory, Design and Applications
CIF:Small:使用稀疏图代码的下一代压缩相位检索:理论、设计和应用
- 批准号:
1527767 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Ultra-FFAST Alias Codes for Sparse Spectrum Estimation: Next Generation Compressed Sensing
EAGER:用于稀疏频谱估计的 Ultra-FFAST 别名代码:下一代压缩感知
- 批准号:
1439725 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Content Delivery over Heterogeneous Networks: Fundamental Limits and Distributed Algorithms
CIF:媒介:协作研究:异构网络上的内容交付:基本限制和分布式算法
- 批准号:
1409135 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Workshop Proposal: Communication Theory and Signal Processing in the Cloud Era
研讨会提案:云时代的通信理论和信号处理
- 批准号:
1228976 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Small: CIF: Foundations of Next-Generation Reliable, Energy-Efficient and Secure Distributed Storage Systems
小:CIF:下一代可靠、节能和安全的分布式存储系统的基础
- 批准号:
1116404 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Interactive Security
CIF:媒介:协作研究:交互式安全
- 批准号:
0964018 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
- 批准号:
2348130 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
- 批准号:
2348304 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
- 批准号:
2348177 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant