A Memory-and-Retrieval Model of Evaluative Learning

评价性学习的记忆和检索模型

基本信息

  • 批准号:
    253296259
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Independent Junior Research Groups
  • 财政年份:
    2014
  • 资助国家:
    德国
  • 起止时间:
    2013-12-31 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

What people like and what they dislike predicts their behavior. Most of such preferences are learned over the course of our lives. Previous research has shown that simply observing a neutral stimulus (for example an unknown person) together with a positive or negative stimulus (for example a liked or disliked person) changes how much we like or dislike the neutral stimulus. This phenomenon is called evaluative conditioning (EC). This project investigates the learning and memory processes that underlie EC and related forms of acquiring preferences.Several questions can be asked about EC: Does it occur when people do not remember the pairings? How long lasting are the new preferences? Does it occur outside the psychological lab? In the Emmy Noether-Group these and other questions are approached from a memory perspective. This perspective, and specifically the “Declarative Memory Model of Evaluative Learning” (DMM), which I developed as part of this project, distinguishes between a learning phase during which the pairings are experienced, a measurement phase, during which the new preferences are assessed or expressed, and a retention interval between learning and measurement. The model offers a dynamic and empirically founded understanding of the processes that result in preferences, it specifies a number of new testable hypotheses, and it allows a better understanding of when EC effects can be expected in real-life situations that are less controlled than in the lab.In the first phases of this project, several predictions of the DMM were tested and largely confirmed: EC effects show if pairings are remembered. They are influenced in a similar way by factors that influence memory – during learning, during measurement, and in between. To test the limits of the model, we also tested hypotheses by other theoretical approaches that propose conditions for attitude learning without memory, for example conditioning with fear or disgust arousing stimuli or the pairing of smell and taste. Under none of these conditions, however, we found evidence for EC without memory. Another focus of the project so far was the understudied question of whether EC effects also show in real-life settings. We did find evidence for a prediction of the DMM when testing people’s attitudes about everyday objects and their previous experiences with them. Our attempts to find EC effects in a lecture hall, however, largely failed. In the extension project, we plan to follow up on mainly two question. The first is whether there are conditions under which EC effects show after pairings are forgotten. We test two hypotheses on this, one derived from the DMM and one from an unexpected previous finding. Second, we want to follow-up on the question of whether and under which conditions EC effects show in real life. We propose two new paradigms that allow us to single out potentially relevant factors in real-life situations while maintaining experimental control.
人们喜欢什么和不喜欢什么可以预测他们的行为。这些偏好大多是在我们的生活过程中习得的。先前的研究表明,仅仅观察一个中性刺激(例如一个未知的人)和一个积极或消极的刺激(例如一个喜欢或不喜欢的人)就会改变我们对中性刺激的喜欢或不喜欢程度。这种现象被称为评价条件反射(EC)。本项目研究了EC的学习和记忆过程以及获取偏好的相关形式。关于EC可以问几个问题:当人们不记得配对时会发生这种情况吗?新的偏好会持续多久?它会在心理实验室之外发生吗?在Emmy noether小组中,这些问题和其他问题都是从记忆的角度来解决的。这个观点,特别是我在这个项目中开发的“评价学习的陈述性记忆模型”(DMM),区分了学习阶段,在这个阶段,配对是经历的,测量阶段,在这个阶段,评估或表达新的偏好,以及学习和测量之间的保持间隔。该模型对导致偏好的过程提供了一个动态的、基于经验的理解,它规定了许多新的可测试的假设,并且它允许更好地理解在现实生活中比在实验室中控制更少的情况下,什么时候可以预期EC效应。在这个项目的第一阶段,对DMM的几个预测进行了测试,并在很大程度上证实了这一点:EC效应表明配对是否被记住。他们以类似的方式受到影响记忆的因素的影响——在学习过程中,在测量过程中,以及两者之间。为了测试模型的局限性,我们还测试了其他理论方法的假设,这些方法提出了无记忆态度学习的条件,例如,用恐惧或厌恶引起的刺激或嗅觉和味觉的配对进行条件反射。然而,在所有这些条件下,我们都没有发现无记忆的EC的证据。到目前为止,该项目的另一个重点是尚未得到充分研究的问题,即EC效应是否也会在现实生活中出现。在测试人们对日常物品的态度和他们以前使用这些物品的经历时,我们确实找到了DMM预测的证据。然而,我们试图在演讲厅里发现EC的效果,但基本上失败了。在扩展项目中,我们计划主要跟进两个问题。第一个问题是,在配对被遗忘后,是否存在EC效应显现的条件。我们对此测试了两个假设,一个来自DMM,另一个来自意想不到的先前发现。其次,我们想进一步探讨EC效应是否以及在何种条件下会在现实生活中出现。我们提出了两种新的范式,使我们能够在保持实验控制的同时,在现实生活中挑出潜在的相关因素。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Anne Gast其他文献

Professorin Dr. Anne Gast的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Anne Gast', 18)}}的其他基金

Conceptual Replications – Guidelines for implementation and factors influencing replicability across different fields in psychology
概念复制 â 心理学不同领域的实施指南和影响可复制性的因素
  • 批准号:
    464369680
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
  • 批准号:
    2905946
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
III: Small: Collaborative Research: Scrutable and Explainable Information Retrieval with Model Intrinsic and Agnostic Approaches
III:小:协作研究:使用模型内在和不可知的方法进行可查和可解释的信息检索
  • 批准号:
    2007398
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Scrutable and Explainable Information Retrieval with Model Intrinsic and Agnostic Approaches
III:小:协作研究:使用模型内在和不可知的方法进行可查和可解释的信息检索
  • 批准号:
    2007907
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of new retrieval method of tropospheric ozone from MAX-DOAS measurements and its application to long-term MAX-DOAS measurements in China and Germany for the validation of satellite observations and model results of tropospheric ozone
开发基于 MAX-DOAS 测量的对流层臭氧新反演方法及其在中国和德国长期 MAX-DOAS 测量中的应用,以验证对流层臭氧的卫星观测和模型结果
  • 批准号:
    428994811
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Single model irregular-region retrieval for rapid plant disease detection
用于快速植物病害检测的单模型不规则区域检索
  • 批准号:
    DP180100958
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Part-based 3D model retrieval queried by keywords representing parts
基于零件的 3D 模型检索,通过代表零件的关键字进行查询
  • 批准号:
    16K16055
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Understanding molecular mechanisms for regulation of memory retrieval by developing model mice showing deficits in memory retrieval and the applications for improvement of brain disorders
通过开发显示记忆检索缺陷的模型小鼠来了解调节记忆检索的分子机制以及在改善脑部疾病中的应用
  • 批准号:
    15H02488
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Scalable and easy-to-use sketch-based 3D model retrieval
可扩展且易于使用的基于草图的 3D 模型检索
  • 批准号:
    26330133
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust and Sensitive Methods for Non-rigid and Partial 3D model Retrieval
用于非刚性和部分 3D 模型检索的稳健且灵敏的方法
  • 批准号:
    EP/J02211X/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Image retrieval model using computational geometry
使用计算几何的图像检索模型
  • 批准号:
    25330002
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了