I-Corps: Artificial Intelligence (AI) Brain Lesion Detection Diagnostic Software
I-Corps:人工智能 (AI) 脑部病变检测诊断软件
基本信息
- 批准号:2234944
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of a simple, workflow-driven solution for detecting focal cortical dysplasia (FCD) with high sensitivity and specificity. As many rural hospitals do not have epilepsy specialists, the proposed cloud-based solution can bring the diagnostic tool into their patients’ care plan. Commercialization of this technology may enable: clinical neurology teams - enabling them to better evaluate patients with suspected FCD for surgery; hospitals - allowing them to provide better patient care; patients - ensuring they live seizure-free lives; and scientists, researchers, and biomedical engineers - enabling them to use artificial intelligence to detect challenging medical conditions not limited to FCD. The project combines biology, medicine, artificial intelligence (AI) technology, and business.This I-Corps project is based on the development of a cloud-based software system to automatically identify focal cortical dysplasia (FCD) lesions with at least 90% accuracy by using adaptive deep machine learning (ML) to segment magnetic resonance imaging (MRI) images and indicate suspected lesions. The output will be an MRI sequence with lesions highlighted and a clinician-friendly report indicating the probability that a FCD lesion is present, and if so, the location. Automated detection of FCD lesions may improve the care of epileptic patients. FCD lesions result in a form of epilepsy characterized by medication-resistant seizures. These lesions are difficult to detect due to their characteristics and location. The current standard of care using visual MRI inspection misses up to 50% of cases, even when employed by experienced neuroradiologists. These highly specialized physicians are usually only available in select academic medical centers or urban environments. Because of the limited availability of specialists and the highly treatable nature of these lesions with surgery, there is a significant unmet need for efficient and accurate identification of FCD lesions in MRI scans.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目更广泛的影响/商业潜力是开发一种简单的、工作流程驱动的解决方案,用于检测局灶性皮质发育不良(FCD),具有高灵敏度和特异性。 由于许多农村医院没有癫痫专科医生,拟议的基于云的解决方案可以将诊断工具纳入患者的护理计划。这项技术的商业化可以使:临床神经病学团队-使他们能够更好地评估疑似FCD的患者进行手术;医院-使他们能够提供更好的患者护理;患者-确保他们过上无创伤的生活;科学家,研究人员和生物医学工程师-使他们能够使用人工智能来检测具有挑战性的医疗条件,而不仅仅限于FCD。 该项目结合了生物学、医学、人工智能(AI)技术和商业。I-Corps项目基于开发基于云的软件系统,通过使用自适应深度机器学习(ML)分割磁共振成像(MRI)图像并指示疑似病变,以至少90%的准确率自动识别局灶性皮质发育不良(FCD)病变。输出将是一个MRI序列,突出显示病变,并提供一份临床医生友好的报告,说明存在FCD病变的概率,如果存在,还说明位置。FCD病变的自动检测可以改善癫痫患者的护理。FCD病变导致一种以耐药性癫痫发作为特征的癫痫。这些病变由于其特征和位置而难以检测。目前使用视觉MRI检查的护理标准错过了高达50%的病例,即使是由经验丰富的神经放射科医生雇用。这些高度专业化的医生通常只在选定的学术医疗中心或城市环境中提供。由于专家的有限性和这些病变的高度可治疗性与手术的性质,有一个显着未满足的需求,在MRI扫描中的FCD病变的有效和准确的识别。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark McManis其他文献
Mark McManis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
- 批准号:
2418277 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation potential of an Artificial Intelligence (AI) approach to quantify and diagnose spinal cord diseases
I-Corps:人工智能 (AI) 方法量化和诊断脊髓疾病的转化潜力
- 批准号:
2416075 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Artificial Intelligence-Empowered Flood Risk Analytics
I-Corps:人工智能赋能的洪水风险分析
- 批准号:
2403646 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Privacy-Responsive Artificial Intelligence-Based Solution for Smart Video Surveillance
I-Corps:基于隐私敏感的人工智能的智能视频监控解决方案
- 批准号:
2323757 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Contextualization of Explainable Artificial Intelligence (AI) for Better Health
I-Corps:可解释人工智能 (AI) 的情境化以改善健康
- 批准号:
2331366 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Audio Artificial Intelligence Data Platform to Diagnose Respiratory Disease
I-Corps:诊断呼吸系统疾病的音频人工智能数据平台
- 批准号:
2345293 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Artificial Intelligence and Haptic-Enabled Robotic Assistant for Surgeons
I-Corps:外科医生的人工智能和触觉机器人助手
- 批准号:
2330934 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant