CAREER: Order and Disorder in Two-dimensional Fluid Motion
职业:二维流体运动中的有序与无序
基本信息
- 批准号:2235395
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many geophysical and astrophysical systems – such as oceanic currents, large-scale weather patterns and planetary atmospheres – are described, to good approximation, by two-dimensional fluid equations, since the vertical extent of these systems is typically much smaller than the horizontal. Understanding the long-term dynamics of two-dimensional fluids is thus fundamental to weather prediction, climate science, and astrophysics. This project aims to advance our understanding of two-dimensional fluids from the perspectives of both geometry and dynamical systems, as well as to bridge the gap between these disciplines through the training of junior researchers and the organizing of mini-courses and conferences.The focus of this work will be the study of the prototype of all such systems, the forced two-dimensional incompressible Navier-Stokes equations and their inviscid, unforced counterpart, the Euler equations. We will analyze the physically relevant regimes of long time and weak dissipation/forcing, in various orders of limits. A rather surprising and mysterious feature of this system is that, in one regime (Euler), it captures the birth and permanence of order in the form of large hurricane – like whirls – while in another regime (Navier-Stokes) it describes a disorderly, seemingly random, turbulent soup of eddies. That is, an ideal Euler fluid tends towards order over time through a process of vortex mergers and mixing, whereas a Navier-Stokes fluid with very slight viscosity and forcing tends towards disorder through a cascade of instabilities in accord with longstanding conjectures of Kolmogorov. The project aims to advance our understanding of these fundamental aspects of fluid motion by studying the behavior of solutions both near and far from equilibrium through the lens of partial differential equations, geometry, and dynamical systems. Computer experiments will be used to inform rigorous mathematical analysis and frame questions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多地球物理学和天体物理学系统--如洋流、大尺度天气模式和行星大气--都是用二维流体方程来描述的,因为这些系统的垂直范围通常比水平范围小得多。因此,了解二维流体的长期动力学是天气预测、气候科学和天体物理学的基础。本项目旨在从几何学和动力学系统的角度增进我们对二维流体的理解,并通过培训初级研究人员和组织小型课程和会议来弥合这些学科之间的差距。这项工作的重点将是研究所有此类系统的原型,强迫二维不可压缩Navier-Stokes方程及其无粘,非受迫对应物,欧拉方程我们将分析长时间和弱耗散/强迫的物理相关制度,在各种限制的顺序。这个系统的一个相当令人惊讶和神秘的特征是,在一个区域(欧拉)中,它以飓风般的大漩涡的形式描述了秩序的诞生和持久性,而在另一个区域(纳维尔-斯托克斯)中,它描述了一种无序的、看似随机的、湍流的漩涡汤。也就是说,一个理想的欧拉流体倾向于通过涡合并和混合的过程随着时间的推移,而一个非常轻微的粘性和强迫的Navier-Stokes流体倾向于通过一系列的不稳定性,在雅阁长期的Kolmogorov方程的无序。该项目旨在通过偏微分方程、几何学和动力系统的透镜研究接近和远离平衡的溶液的行为,促进我们对流体运动这些基本方面的理解。计算机实验将被用来通知严格的数学分析和框架问题。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Distribution of Heat in Fibered Magnetic Fields
关于纤维磁场中的热量分布
- DOI:10.1007/s00220-023-04886-4
- 发表时间:2024
- 期刊:
- 影响因子:2.4
- 作者:Drivas, Theodore D.;Ginsberg, Daniel;Grayer, Hezekiah
- 通讯作者:Grayer, Hezekiah
Self-similarity and vanishing diffusion in fluvial landscapes
- DOI:10.1073/pnas.2302401120
- 发表时间:2023-12-19
- 期刊:
- 影响因子:11.1
- 作者:Anand,Shashank Kumar;Bertagni,Matteo B.;Porporato,Amilcare
- 通讯作者:Porporato,Amilcare
Statistical determinism in non-Lipschitz dynamical systems
- DOI:10.1017/etds.2023.74
- 发表时间:2020-04
- 期刊:
- 影响因子:0.9
- 作者:Theodore D. Drivas;A. Mailybaev;Artem Raibekas
- 通讯作者:Theodore D. Drivas;A. Mailybaev;Artem Raibekas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theodore Drivas其他文献
Multi-ethnic heterozygote frequencies of cancer susceptibility genes to inform counseling of reproductive risk
癌症易感基因的多民族杂合子频率,为生殖风险咨询提供信息
- DOI:
10.1016/j.gim.2024.101246 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:6.200
- 作者:
Jacquelyn Powers;Heather Wachtel;Erica Trujillo;Heena Desai;Ryan Hausler;Laura Conway;Bradley Wubbenhorst;Anurag Verma;Shefali S. Verma;Yuki Bradford;Ashlei Brock;Stephanie DerOhannessian;Scott Dudek;Joseph Dunn;Theodore Drivas;Ned Haubein;Khadijah Hu-Sain;Renae Judy;Ashley Kloter;Yi-An Ko;Kara N. Maxwell - 通讯作者:
Kara N. Maxwell
Performance Evaluation of the Enhanced MI-MAC Protocol for Multimedia Integration over Wireless Cellular Networks
- DOI:
10.1007/s11277-008-9590-2 - 发表时间:
2008-10-10 - 期刊:
- 影响因子:2.200
- 作者:
Theodore Drivas;Polychronis Koutsakis;Michael Paterakis - 通讯作者:
Michael Paterakis
<em>PMS2CL</em> interference leading to erroneous identification of a pathogenic <em>PMS2</em> variant in Black patients
- DOI:
10.1016/j.gimo.2024.101858 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Jacqueline Cappadocia;Lisa B. Aiello;Michael J. Kelley;Bryson W. Katona;Kara N. Maxwell;Anurag Verma;Shefali S. Verma;Yuki Bradford;Ashlei Brock;Stephanie DerOhannessian;Scott Dudek;Joseph Dunn;Theodore Drivas;Ned Haubein;Khadijah Hu-Sain;Renae Judy;Ashley Kloter;Yi-An Ko;Meghan Livingstone;Linda Morrel - 通讯作者:
Linda Morrel
O38: Universal exome sequencing in critically-ill adults: A diagnostic yield of 25% and race-based disparities in access to genetic testing
- DOI:
10.1016/j.gimo.2024.101024 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Theodore Drivas;Jessica Gold - 通讯作者:
Jessica Gold
P404: Variants of uncertain significance in genes associated with inherited connective tissue disorders pose unique challenges
- DOI:
10.1016/j.gimo.2024.101298 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Allison Mazzella;Stephanie Asher;Isaac Elysee;Laura Hennessy;Anna Raper;Theodore Drivas;Staci Kallish - 通讯作者:
Staci Kallish
Theodore Drivas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theodore Drivas', 18)}}的其他基金
On the Emergence of Small and Large Scales in Fluid Motion
流体运动中小尺度和大尺度的出现
- 批准号:
2106233 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Order-disorder control in functional oxides
功能氧化物的有序-无序控制
- 批准号:
2871980 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
The role of order and disorder in impact absorbing materials
有序和无序在冲击吸收材料中的作用
- 批准号:
2743480 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Studentship
PHARMACIST-INTEGRATED MODEL OF MEDICATION TREATMENT FOR OPIOID USE DISORDER (CTN-0116). 09/01/2021 - 03/01/2024. N01DA-19-2250. TASK ORDER 75N95021F00
阿片类药物使用障碍药物治疗的药剂师综合模型 (CTN-0116)。
- 批准号:
10505741 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
LONGITUDINAL FOLLOW-UP OF INDIVIDUALS WITH OPIOID USE DISORDER (LFU-OUD). 09/01/2021 - 08/31/2026. N01DA-19-2250. TASK ORDER 75N95021F00007 (TO26).
对阿片类药物使用障碍 (LFU-OUD) 患者进行纵向随访。
- 批准号:
10505744 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
A genome-wide association study in Japanese patients with rheumatoid arthritis in order to identify susceptibility loci for Methotrexate-associated lymphoproliferative disorder.
对日本类风湿性关节炎患者进行的一项全基因组关联研究,旨在确定甲氨蝶呤相关淋巴增殖性疾病的易感位点。
- 批准号:
20H03722 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Recovering Lost Female Voices: Gender, Theology and Politics in Lucy Hutchinson's Order and Disorder
找回失去的女性声音:露西·哈钦森《秩序与混乱》中的性别、神学和政治
- 批准号:
2445974 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Studentship
TRANSCRANIAL MAGNETIC STIMULATION FOR THE TREATMENT OF METHAMPHETAMINE/COCAINE USE DISORDER (CTN-0108). 9/21/2020-7/17/2023. N01DA-19-2250. TASK ORDER
用于治疗甲基苯丙胺/可卡因使用障碍的经颅磁刺激 (CTN-0108)。
- 批准号:
10288053 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Order to Disorder Transition in Zebrafish Tailbud Cell Migration
斑马鱼尾芽细胞迁移中的有序到无序转变
- 批准号:
10237142 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
EAGER: Chemical Order/Disorder Enabled Phononic Memory in PbSc0.5Ta0.5O3
EAGER:PbSc0.5Ta0.5O3 中的化学有序/无序启用声子记忆
- 批准号:
2006231 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Order and disorder in metal organic frameworks
金属有机骨架的有序与无序
- 批准号:
2088777 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Studentship