CAREER: Mechanical Metamaterial Electronics: Theory, Design and Applications

职业:机械超材料电子:理论、设计和应用

基本信息

  • 批准号:
    2235494
  • 负责人:
  • 金额:
    $ 53.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

Mechanical metamaterials are a class of artificially engineered materials that can offer new and/or customized behaviors through the interplay between material properties and geometry. This research into mechanical metamaterials will explore fundamental properties of active metamaterials never realized before by traditional research methods, potentially leading to the invention of novel electronic material systems that operate autonomously and serve various roles in engineering and medical applications. Specifically, this Faculty Early Career Development (CAREER) project will establish a new field of mechanical metamaterial electronics (meta-mechanotronics). This field couples the engineering domains of mechanical metamaterials, digital electronics, and nano energy harvesting. The generated knowledge will provide new road maps for design and discovery of self-powered autonomous engineered materials and future mechanical metamaterial computers. This CAREER award will accelerate the education of undergraduate and graduate researchers at the intersection of electronic materials, structural mechanics, green energy harvesting, and machine learning. An innovative outreach program is planned for K-12 students that will inspire them to pursue careers in STEM. Under the “train-the-trainer” model, members of multiple ASCE Student Chapters will be trained and deployed with educational/development kits to educate thousands of middle and high school students nationally.The overarching goal of this project is to broaden our understanding of the science of designing active electronic mechanical metamaterials with sensing, triboelectric energy harvesting, actuation, and information processing functionalities. These material systems will be composed of rationally designed micro/nano structures with built-in contact-electrification mechanisms to realize such advanced functionalities. A computational data-centric framework based on topology optimization and machine learning will be created to explore new design possibilities for multi-layered and multi-material electronic mechanical metamaterials. Numerical and theoretical models will be developed to characterize the mechanical and electrical behavior of the explored mechanical metamaterials. Various rational designs for the triboelectric layers, material and surface optimization methods, and additive manufacturing processes will be investigated to increase the power output of the electronic mechanical metamaterials to levels on the order of 100-500 µW. With these power output levels, electronic mechanical metamaterials can potentially be used for green energy harvesting to power low-power electronic devices. The electrical signals generated by these materials systems under external stimuli will be used to create self-powered mechanoelectrical-logic gates for digital computation. Digital information storage will be demonstrated by incorporating the data into the self-recovering unit cell patterns. Meta-mechanotronics-inspired digital circuits will be designed to perform basic computations (addition, subtraction, multiplication, and division). The real‐life applications of meta-mechanotronics will be demonstrated by creating metamaterial orthopedic implants with diagnostic functionality.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机械超材料是一类人工工程材料,可以通过材料特性和几何形状之间的相互作用提供新的和/或定制的行为。这项对机械超材料的研究将探索传统研究方法从未实现过的有源超材料的基本特性,可能导致发明自主运行并在工程和医疗应用中发挥各种作用的新型电子材料系统。具体来说,这个教师早期职业发展(CAREER)项目将建立一个新的机械超材料电子学(元机械电子学)领域。该领域耦合机械超材料,数字电子和纳米能量收集的工程领域。所产生的知识将为设计和发现自供电的自主工程材料和未来的机械超材料计算机提供新的路线图。该职业奖将加速电子材料、结构力学、绿色能源收集和机器学习交叉领域的本科生和研究生研究人员的教育。为K-12学生计划了一项创新的推广计划,这将激励他们在STEM领域从事职业。在“培训者培训”模式下,多个ASCE学生分会的成员将接受培训,并部署教育/开发工具包,以教育全国数千名初中和高中学生。该项目的总体目标是扩大我们对设计具有传感,摩擦电能量收集,驱动和信息处理功能的有源电子机械超材料科学的理解。 这些材料系统将由合理设计的微/纳米结构组成,具有内置的接触带电机制,以实现这些先进的功能。将创建一个基于拓扑优化和机器学习的以计算数据为中心的框架,以探索多层和多材料电子机械超材料的新设计可能性。将开发数值和理论模型来表征所探索的机械超材料的机械和电气行为。将研究摩擦电层的各种合理设计,材料和表面优化方法以及增材制造工艺,以将电子机械超材料的功率输出提高到100-500 µW的水平。利用这些功率输出水平,电子机械超材料可以潜在地用于绿色能量收集,以向低功率电子设备供电。这些材料系统在外部刺激下产生的电信号将用于创建用于数字计算的自供电机电逻辑门。数字信息存储将通过将数据纳入自我恢复的单位单元模式来演示。元机械电子学启发的数字电路将被设计为执行基本计算(加,减,乘,除)。超机械电子学的真实的应用将通过创造具有诊断功能的超材料骨科植入物来展示。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Alavi其他文献

Amir Alavi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Standard Grant
Alabama Agricultural and Mechanical University ALSAMP Bridge to the Doctorate: Navigating BD Scholars’ Successful Transition to STEM Graduate Programs
阿拉巴马农业机械大学 ALSAMP 通往博士学位的桥梁:引导 BD 学者成功过渡到 STEM 研究生项目
  • 批准号:
    2404955
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Standard Grant
Neural-driven, active, and reconfigurable mechanical metamaterials (NARMM)
神经驱动、主动和可重构机械超材料 (NARMM)
  • 批准号:
    MR/X035506/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Fellowship
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Institutional Innovation for sustainable mechanical rental service for resource poor farmers
为资源贫乏农民提供可持续机械租赁服务的制度创新
  • 批准号:
    23K23708
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidating the involvement of transient receptor potential vanilloid-type 4 in mechanical stimuli-induced swallowing reflex
阐明瞬时受体电位香草酸4型在机械刺激诱导的吞咽反射中的参与
  • 批准号:
    24K19847
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Standard Grant
ICF Mechanical Property Optimisation of Magnesium Alloy Wires for Bioresorbable Vascular Scaffolds for the Treatment of Peripheral Arterial Disease
用于治疗外周动脉疾病的生物可吸收血管支架镁合金丝的 ICF 机械性能优化
  • 批准号:
    MR/Z503897/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Research Grant
Innovative Zn alloys with essential mechanical and biofunctional properties
具有基本机械和生物功能特性的创新锌合金
  • 批准号:
    DP240101131
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了