NSF Convergence Accelerator Track I: Revolutionizing the manufacture of Portland cement concretes towards a circular and carbon-negative future
NSF 融合加速器轨道 I:彻底改变波特兰水泥混凝土的制造,迈向循环和负碳未来
基本信息
- 批准号:2236331
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Concrete is the most widely used construction material in the world. However, current production of ordinary Portland cement (OPC)-based concrete contributes to three main challenges that our society is facing today: climate change, resource depletion, and solid waste. This convergence research will establish a pathway to address all these challenges by leveraging the synergy of circular economy principles and a revolutionary manufacturing method of concrete which converts concrete into one of the largest sinks for CO2. Through a biomolecule-regulated carbonation (BioCarb) technology, this new manufacturing method transforms cement slurry into an effective CO2 absorbent, which can absorb and permanently store 25 to 50 times more CO2 in fresh concrete than existing technologies. More importantly, the compressive strength of the produced concrete can be drastically increased by in-situ produced nanoparticles. Similarly, calcium-rich industrial wastes – such as recycled concrete fines, steel slag, and coal ashes – can be converted into carbon-negative supplementary cementitious materials, which can substantially reduce the amount of OPC needed for concrete production. In addition, the functional biomolecules used in BioCarb will be extracted from agricultural waste, which provides a new solution to decarbonize chemical admixtures used in concrete. If successful, this project can unlock the enormous potential of concrete for permanent storage of CO2 as carbonate minerals and decarbonize all ingredients of concrete. As a result, the CO2 footprint of concrete will potentially be reduced by more than 50%. If the proposed technology is deployed at full scale, over 2 billion metric tons of CO2 can be reduced per year globally, and more than 3 billion metric tons of solid wastes can be converted into useful cementitious materials and aggregate every year and avoiding extraction of the same amounts of natural resources.Concrete can serve as a CO2 sink through mineralization processes, in which CO2 react with calcium-rich minerals in concrete to produce CaCO3 and permanently store CO2. However, key challenges including diffusion barriers and marginal strength improvement impede existing technologies to reach full potential of concrete for CO2 sequestration. To fully unlock this potential, we propose a breakthrough technology, BioCarb, to maximize CO2 uptake while n-situ produce nanoscale performance enhancers before concrete hardens. This is achieved by using a biomolecule as small-dose additive, which regulates the carbonation process of calcium-rich minerals through: i) chelating with calcium to facilitate the carbonation of the minerals, ii) controlling the crystal nucleation, orientation, size, and polymorph of calcium carbonate, and iii) enabling uniform dispersion of the produced CaCO3 nano- and micro-particles. As a result, much more CO2 can be absorbed by concrete directly without compromising performance. More importantly, the metastable CaCO3 produced through BioCarb can react with the cement to form new minerals or dissolve and re-precipitate to function as a binding phase in concrete. As a result, a novel calcium silicate hydrate-CaCO3 hybrid binder can form in the concrete, leading to improved mechanical strength, volumetric stability, and durability. Similarly, this process can be used to process other calcium-rich solid wastes and convert them into carbon-negative supplementary cementitious materials and aggregate for maximal substitution of cement and naturally extracted aggregate, respectively. This implies an even bigger potential for decarbonization. A convergent research approach is employed in this project to transit BioCarb into practical use, by fusing multiple disciplines – civil engineering, material science and engineering, environmental engineering, chemistry, food science and processing, and environmental justice – and the end uses of BioCarb and full life cycle considerations for the environmentally and economically sustainable production of concrete.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
混凝土是世界上使用最广泛的建筑材料。然而,目前普通波特兰水泥(OPC)基混凝土的生产导致了我们社会今天面临的三个主要挑战:气候变化、资源枯竭和固体废物。这种融合研究将通过利用循环经济原则和革命性的混凝土制造方法的协同作用,将混凝土转化为最大的二氧化碳汇之一,从而建立一种解决所有这些挑战的途径。 通过生物分子调节的碳酸化(BioCarb)技术,这种新的制造方法将水泥浆转化为有效的二氧化碳吸收剂,可以吸收并永久储存比现有技术多25至50倍的二氧化碳。更重要的是,所生产的混凝土的抗压强度可以通过原位产生的纳米颗粒而大幅增加。类似地,富含钙的工业废物-如再生混凝土细粉、钢渣和煤灰-可以转化为负碳补充胶凝材料,这可以大大减少混凝土生产所需的OPC量。此外,BioCarb中使用的功能性生物分子将从农业废弃物中提取,这为混凝土中使用的化学外加剂脱碳提供了新的解决方案。如果成功,该项目可以释放混凝土作为碳酸盐矿物永久储存二氧化碳的巨大潜力,并使混凝土的所有成分脱碳。因此,混凝土的CO2足迹可能会减少50%以上。如果所提出的技术得到全面部署,全球每年可减少超过20亿公吨的CO2,每年可将超过30亿公吨的固体废物转化为有用的水泥材料和骨料,并避免提取相同数量的自然资源。混凝土可通过矿化过程作为CO2汇,其中CO2与混凝土中富含钙矿物质反应生成CaCO 3并永久储存CO2。然而,包括扩散障碍和边际强度改善在内的关键挑战阻碍了现有技术充分发挥混凝土的CO2封存潜力。为了充分释放这一潜力,我们提出了一种突破性的技术,BioCarb,以最大限度地提高二氧化碳的吸收,同时在混凝土硬化之前原位生产纳米级性能增强剂。这是通过使用生物分子作为小剂量添加剂来实现的,其通过以下方式调节富钙矿物质的碳酸化过程:i)与钙螯合以促进矿物质的碳酸化,ii)控制碳酸钙的晶体成核、取向、尺寸和多晶型物,以及iii)使所产生的CaCO 3纳米颗粒和微米颗粒均匀分散。因此,混凝土可以直接吸收更多的CO2,而不会影响性能。更重要的是,通过BioCarb产生的亚稳态CaCO 3可以与水泥反应形成新的矿物质,或溶解和再沉淀,作为混凝土中的粘结相。因此,可以在混凝土中形成新型硅酸钙水合物-CaCO 3混合粘结剂,从而改善机械强度、体积稳定性和耐久性。同样,该工艺可用于处理其他富钙固体废物,并将其转化为负碳补充胶凝材料和骨料,分别最大限度地取代水泥和天然提取骨料。这意味着更大的脱碳潜力。该项目采用融合研究方法,通过融合多个学科-土木工程,材料科学与工程,环境工程,化学,食品科学与加工,环境正义-和BioCarb的最终用途,以及对混凝土的环境和经济可持续生产的全生命周期考虑。该奖项反映了NSF的法定使命并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jialai Wang其他文献
Pre-carbonation of Ca(OH)sub2/sub for producing properties-optimized CaCOsub3/sub through controlling magnetic field and its influence on the performance of mortars
通过控制磁场对氢氧化钙(Ca(OH)₂)进行预碳酸化以生产性能优化的碳酸钙(CaCO₃)及其对砂浆性能的影响
- DOI:
10.1016/j.conbuildmat.2025.140496 - 发表时间:
2025-03-28 - 期刊:
- 影响因子:8.000
- 作者:
Xianggeng Wang;Zeren Chen;Peiyuan Chen;Lei Wang;Peng Qian;Shuang Wang;Jialai Wang - 通讯作者:
Jialai Wang
High-efficiency internal curing for ultra-high performance concrete using perforated cenospheres via an equivalent substitution approach
采用穿孔粉煤灰球通过等效替代法对超高强混凝土进行高效内部养护
- DOI:
10.1016/j.conbuildmat.2025.140259 - 发表时间:
2025-03-07 - 期刊:
- 影响因子:8.000
- 作者:
Peiyuan Chen;Tao Zhou;Chunning Pei;Weibo Tan;Yi Fang;Qinghua Liu;Jialai Wang - 通讯作者:
Jialai Wang
Delamination of layered structures on elastic foundation
- DOI:
10.1016/j.engfracmech.2011.01.005 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:
- 作者:
Chao Zhang;Jialai Wang - 通讯作者:
Jialai Wang
A clean dispersant for nano-silica to enhance the performance of cement mortars
纳米二氧化硅清洁分散剂,可增强水泥砂浆的性能
- DOI:
10.1016/j.jclepro.2022.133647 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
Xin Qian;Jialai Wang;Liang Wang;Yi Fang;Peiyuan Chen;Mengxiao Li - 通讯作者:
Mengxiao Li
Cohesive zone model of FRP-concrete interface debonding under mixed-mode loading
- DOI:
10.1016/j.ijsolstr.2007.02.042 - 发表时间:
2007-10 - 期刊:
- 影响因子:3.6
- 作者:
Jialai Wang - 通讯作者:
Jialai Wang
Jialai Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jialai Wang', 18)}}的其他基金
I-Corps: Microencapsulation of phase change materials using cenospheres for thermal energy efficiency in building materials
I-Corps:使用空心微珠对相变材料进行微封装,以提高建筑材料的热能效率
- 批准号:
2118493 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: In-situ Production of Calcium Carbonate Nanoparticles in Fresh Concrete
合作研究:新拌混凝土中碳酸钙纳米颗粒的原位生产
- 批准号:
1761672 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: Multifunctional Structural Panel for Energy Efficiency and Multi-Hazards Mitigation
合作研究:用于提高能源效率和减轻多种危害的多功能结构面板
- 批准号:
1563551 - 财政年份:2016
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: Geopolymeric Nanocomposite, A Next Generation Material For Infrastructure Sustainability
合作研究:地聚合物纳米复合材料,用于基础设施可持续性的下一代材料
- 批准号:
1000580 - 财政年份:2010
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Characterization of Environment-Assisted Subcritical Debond of Bonded Repairs/Strengthening of Aging Infrastructure
老化基础设施保税维修/加固的环境辅助亚临界脱粘特性
- 批准号:
0927938 - 财政年份:2009
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant